\(T=\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Ta có:

\(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{9ab^2}{6b}=a-\dfrac{3ab}{2}\)

\(\Rightarrow T\ge a+b+c-\dfrac{3}{2}\left(ab+bc+ca\right)\)

\(\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)^2=1-\dfrac{1}{2}=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài tương tự bài dưới đây:

Câu hỏi của Nguyễn Đặng Việt Tuấn - Toán lớp 9 | Học trực tuyến

Ta chứng minh được:

\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\leq \frac{2}{3}+ab+bc+ac\)

\(\Rightarrow P\leq \frac{2}{3}+2019(ab+bc+ac)\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\leq \frac{2021}{3}\) hay \(P_{\max}=\frac{2021}{3}\)

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

13 tháng 6 2019

Dự đoán xảy ra cực trị khi a = b = c  =2. Khi đó P =\(\frac{3\sqrt{2}}{4}\). Ta sẽ chứng minh đó là MAX của P

Ta có: \(\left(\frac{a+b+c}{3}\right)^3-\left(a+b+c\right)\ge abc-\left(a+b+c\right)=2\)

Đặt a + b +c = t>0 suy ra \(\frac{t^3-27t}{27}\ge2\Leftrightarrow t^3-27t\ge54\Leftrightarrow t^3-27t-54\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}t\ge6\\t=-3\left(L\right)\end{cases}}\). Do vậy \(t\ge6\) (em làm tắt xiu nhé,dài quá)

\(P=\Sigma_{cyc}\frac{2}{\sqrt{2}.\sqrt{2\left(a^2+b^2\right)}}\le\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Giờ đi chứng minh \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{3}{4}\)

Em cần suy ra nghĩ tiếp:(

13 tháng 6 2019

suy ra -> suy nghĩ giúp em ạ!

 _tth_

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)

\(P\le\frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM - GM :

\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)

Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)

2 tháng 3 2019

Ta có: \(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, bất đẳng thức trên tương đương

\(b\left(a-b\right)^2\ge0\)(Luôn đúng)

Tương tự ta có

\(\dfrac{b^3}{b^2+c^2}\ge\dfrac{2b-c}{2};\dfrac{c^3}{a^2+b^2}\ge\dfrac{2c-a}{2}\)

\(\Rightarrow P\ge\dfrac{a+b+c}{2}=\dfrac{1}{2}\)

GTNN là \(\dfrac{1}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

9 tháng 12 2018

\(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\\ =\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\\ =\left(\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}\right)+3\\ \overset{AM-GM}{\ge}\dfrac{9}{2a-a^2+2b-b^2+2c-c^2}+3\\ =\dfrac{9}{\left(2a+2b+2c\right)-\left(a^2+b^2+c^2\right)}+3\\ =\dfrac{9}{\left(2a+2b+2c\right)-\left(a^2+b^2+c^2\right)}+3\\ \ge\dfrac{9}{2\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{3}}+3\\ =\dfrac{9}{2\cdot1-\dfrac{1}{3}}+3=\dfrac{42}{5}\)

Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}2a-a^2=2b-b^2=2c-c^2\\a=b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow a=b=c=\dfrac{1}{3}\)

9 tháng 12 2018

Vậy \(A_{Min}=\dfrac{42}{5}\) khi \(a=b=c=\dfrac{1}{3}\)