Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
=> \(A< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)
Lại có:
\(A>\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
=> \(A>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)
=> 1/100 < A < 1/99
\(A=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)
=> \(A>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Lại có: \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{100}{100}=1\)
=> \(\frac{7}{12}< A< 1\)
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
từ 101 đến 200 có 100 số
ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\left(100s\text{ố}\right)\)
=>\(A>\frac{100}{200}=\frac{1}{2}\left(1\right)\)
\(A<\frac{1}{101}+\frac{1}{101}+....+\frac{1}{101}\left(100\right)s\text{ố}\)
=> A<1 (2)
Từ (1) và(2) ta có 1/2<A<1
Dùng phương pháp CASIO fx 570 ES PLUS thì ta chứng minh được \(A< \frac{7}{12}\)
Lời giải:
$A=\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}$
$> \frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{101}{200}>\frac{100}{200}=\frac{1}{2}$
Do đó đề sai.