Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:
\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)
\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Sửa lại đề : CM : \(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}+3\)
Ta có :
\(\frac{1}{b^2+c^2}=\frac{a^2+b^2+c^2}{b^2+c^2}=\frac{b^2+c^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}=1+\frac{a^2}{b^2+c^2}\)
Mà \(b^2+c^2\ge2bc\) nên \(\frac{1}{b^2+c^2}\le1+\frac{a^2}{2bc}\)(1)
CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{a^2+b^2}\le1+\frac{c^2}{2ab}\left(2\right)\\\frac{1}{c^2+a^2}\le1+\frac{b^2}{c^2+a^2}\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2);(3) tại ta được :
\(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^2}{2bc}+\frac{c^2}{2ab}+\frac{b^2}{2ac}+3=\frac{a^3+b^3+c^3}{2abc}+3\)
=> đpcm
chứng minh gì bạn?