K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

a, Chứng minh được tương tự câu 1a,

=>  O ' M O ^ = 90 0  

Áp dụng hệ thức lượng trong tam giác vuông tính được MA =  R r

b, Chứng minh  S B C O O ' = R + r R r

c, Chứng minh được: ∆BAC:∆OMO’ =>  S B A C S O M O ' = B C O O ' 2

=>  S B A C = S O M O ' . B C 2 O O ' 2 = 4 R r R r R + r

d, Tứ giác OBCO’ là hình thang vuông tại B và C có IM là đường trung bình => IM ⊥ BC = {M}

23 tháng 4 2017

a, Chứng minh được  B A C ^ = 90 0  kết hợp  B A D ^ = C A E ^ = 90 0 => ĐPCM

b, Chứng minh ∆BAD:∆EAC => AD.AE=AB.AC(đpcm)

c, Chứng minh tứ giác OIO’K là hình chữ nhật

Đường tròn ngoại tiếp ∆OKO’ chính là đường tròn ngoại tiếp hình chữ nhật ,có đường kính là IK mà IK ⊥ BC tại I

29 tháng 12 2023

a: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: IO là phân giác của góc DIA

=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IO' là phân giác của góc AIE

=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)

Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)

=>\(2\cdot\widehat{OIO'}=180^0\)

=>\(\widehat{OIO'}=90^0\)

b: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: IA=IE

ID=IA

Do đó: ID=IE

=>I là trung điểm của DE

=>I là tâm đường tròn đường kính DE

Xét ΔDAE có

AI là bán kính

\(AI=\dfrac{DE}{2}\)

Do đó: ΔADE vuông tại A

=>A nằm trên (I)

Xét (I) có

IA là bán kính

O'O\(\perp\)IA tại A

Do đó: OO' là tiếp tuyến của (I)

=>O'O là tiếp tuyến của đường tròn đường kính DE

 

18 tháng 12 2022

loading...

a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KB=KM\left(1\right)\)

Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KC=KM\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)

△BME nội tiếp đường tròn (O) đường kính BE.

⇒△BME vuông tại MM.

\(\Rightarrow\widehat{BME}=90^0\)

b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))

O thuộc đường trung trực của BM \(\left(OB=OM\right)\)

⇒OK là đường trung trực của BM mà OK cắt BM tại N.

⇒N là trung điểm BM.

- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))

I thuộc đường trung trực của CM \(\left(IC=IM\right)\)

⇒IK là đường trung trực của CM mà IK cắt CM tại P.

⇒P là trung điểm IK và \(CM\perp IK\) tại P.

Xét △BCM có: N là trung điểm BM, P là trung điểm CM.

⇒NP là đường trung bình của △BCM.

⇒NP//CM.

c) *Hạ \(IH\perp OB\) tại H.

Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)

⇒BCIH là hình chữ nhật.

\(\Rightarrow BC=IH;IC=BH=r\)

Xét △ICK vuông tại C có IP là đường cao:

\(\Rightarrow IK.IP=IC^2=r^2\)

Xét △OHI vuông tại H có:

\(HI^2+OH^2=OI^2\)

\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)

Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)

Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)

\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)

 

22 tháng 1 2017

a, Chứng minh tứ giác AEIF là hình chữ nhật và K là trung điểm AI

b, Có IE.IO =  I B 2 = B C 2 4 và IF.IO' =  I C 2 = B C 2 4

=> 2.(IE.IO+IF.IO') =  A B 2 + A C 2

c, PK Là đường trung bình của ∆OAI và là trung trực của EA

Ta có ∆PEK = ∆PAK nên  P E K ^ = P A K ^

Vậy  P E K ^ = 90 0 => đpcm

d, ∆ABC:∆IOO’ =>  S A B C S I O O ' = B C O O ' 2 =>  S A B C = S I O O ' . B C 2 O O ' 2

mà BC = 2AI'; OO' = 2a; S O I O ' = 1 2 . 2 a . I A = a . I A => S A B C = I A 2 a

I A 2 = R R ' ⩽ R + R ' 2 2 = a 2 => IA lớn nhất bằng a khi R=R’

10 tháng 6 2015

vẽ hình rồi mình làm cho

https://diendantoanhoc.net/index.php?app=core&module=attach&section=attach&attach_id=20602

Vào link này xem nhé

Học tốt!!!!!!!