K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

a) Xét ΔABC và ΔPMN ta có:

AB = PM (GT)

BC = MN (GT)

AC = PN (GT)

=> ΔABC = ΔPMN (c - c - c)

b) ΔABC = ΔPMN (cmt)

=> Góc BAC = Góc MPN (2 góc tương ứng)

19 tháng 1 2021

cảm ơn bạn

 

a) Mình sử dụng luôn 3 đường trung tuyến của câu b nha bạn

Vì G là trọng tâm của \(\Delta ABC\) nên

\(GA=\frac{2}{3}AM;GB=\frac{2}{3}BN;GC=\frac{2}{3}CP\left(1\right)\)

\(\Delta ABC\) đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau

=> AM = BN = CP (2)

Từ (1), (2) => GA = GB = GC

b) Xét \(\Delta ABC\) có : PA = PB ; NA = NC

\(\Rightarrow\) PN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) PN // BC

Xét \(\Delta ABC\) có : PA = PB ; MB = MC

=> MP là đường trung bình của \(\Delta ABC\)

=> MP // AC

c) Vì \(\Delta ABC\) đều mà AM là tung tuyến => AM là phân giác

=> \(\widehat{BAM}=\widehat{MAC}=\frac{60^o}{2}=30^o\)

Có AN = MN => \(\Delta AMN\) cân tại N

=> \(\widehat{NMA}=\widehat{NAM}=30^o\) (1)

Có MP = PA => \(\Delta AMP\) cân tại P

\(\Rightarrow\widehat{PAM}=\widehat{PMA}=\frac{60^o}{2}=30^o\) (2)

Xét \(\Delta ABM\) vuông tại M có MP là đường trung tuyến ứng với cạnh huyền AB

=> MP = PA = PB

Xét \(\Delta AMC\) vuông tại M có MN là đường trung tuyến ứng với cạnh huyền AC

=> MN = NA = NC

mà NA = CP

=> PM = MN => \(\Delta PMN\) cân tại M (3)

Từ (1) và (2) và (3) => \(\Delta PMN\) đều

21 tháng 5 2019

mình chưa học đường trung bình ạ :((, có thể chỉ cách khác được không ạ ?

21 tháng 5 2019

A B C G M P N

a) tg ABC đều 

mà G là trọng tâm
=> AG,CG,BG là dg pg
thì có các tg AGB, AGC,BGC cân

=> AG=CG=BG

b) tg APN cân tại A(tự cm)

mà góc A(lớn ) = 60độ

=> tg APN đều => góc ANP=góc ACB

=>PN//BC(...)

CMT vs các tg MNC,PMB

c)tg MNC=tgPMB=tg PNA(M,N,P lần lượt là tđ của BC,AC,AB)

=> MN=PM=PN

=> tg PMN đều

18 tháng 10 2020

Cách 1: 

Xét ΔMNP có : 

PM = PN ( gt ) 

⇒ ΔMNP cân.

⇒ ^PMN = ^PNM ( t/c Δcân )

Cách 2: 

Từ P kẻ PI là phân giác ^MPN

Vì ΔMPN cân (PM = PN)

=> PI là phân giác đồng thời là trung trực

=> IM = IN

Xét ΔMPI và ΔNPI có:

   PM = PN (gt)

   P1 = P2 (PI là pg)

   PI cạnh chung

=> ΔMPI = ΔNPI (c.g.c)

=> ^PMN = ^PNM ( 2 góc tg ứng)

18 tháng 10 2020

P M N A 1 2

Cách 1: Vẽ PA là tia phân giác của \(\widehat{P}\)

Xét  \(\Delta PMA\)và \(\Delta PNA\)có:

PM=PN (gt)

\(\widehat{MPA}\)=\(\widehat{NPA}\)(vì PA là tia phân giác của \(\widehat{P}\))

PA là cạnh chung

=>\(\Delta MPA=\Delta NPA\)(c.g.c)

=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)

P M N A

Cách 2: Vẽ A là trung điểm của MN

Xét \(\Delta PMA\)và \(\Delta PNA\)có:

MP=NP (gt)

MA=NA (vì A là trung điểm của MN)

PA là cạnh chung

=>\(\Delta PMA=\Delta PNA\)(c.c.c)

=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)

Vậy .....

Bài 3: 

a: Ta có PQ+QM=PM

PR+RN=PN

mà PM=PN

và PQ=PR

nên QM=RN

b: Xét ΔPMN có PQ/PM=PR/PN

nên QR//MN