Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)
( điều này luôn đúng với mọi x ; y > 0 )
=> BĐT được c/m
Áp dụng vào bài toán , ta có :
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)
\(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\left(x,y,z\ne0\right)\).
Ta có:
\(a+b+c=0\).
Ta phải chứng minh rằng nếu \(a+b+c=0\)thì \(a^3+b^3+c^3=3abc\).
Thật vậy, xét hiệu \(A=a^3+b^3+c^3-3abc\)với \(a+b+c=0\).
\(A=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\).
\(A=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\).
\(A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\).
\(A=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2-3ab\right)\).
\(A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
\(A=0\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(vì \(a+b+c=0\)).
Do đó \(a^3+b^3+c^3-3abc=0\).
\(\Rightarrow a^3+b^3+c^3=3abc\)với \(a+b+c=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)với \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)(điều phải chứng minh).
HOlder:
\(VT=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\ge\left(1+\sqrt[3]{xyz}\right)^3=VP\)
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1