Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).
a, Xét tứ giác HFEB có:
\(\widehat{FHB}+\widehat{FEB}=90+90=180^0\)
--> Tứ giác HFEB nội tiếp
b, Dùng hệ thức lượng trong \(\Delta ABC\) vuông
\(AC^2=AH.AB\)
Mà \(\Delta AHF=\Delta AEB\left(tự.chứng.minh\right)\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AE}=\dfrac{AF}{AB}\Rightarrow AH.AB=AE.AF\\ \Rightarrow AC^2=AE.AF\)
c, Ta có AICK là tứ giác nội tiếp \(\left(\widehat{ACK}+\widehat{IKA}=180^0\right)\)
\(\widehat{IKb}+\widehat{IEB}=180^0\\ \Rightarrow\widehat{AIK}+\widehat{EIK}=\widehat{EIK}+\widehat{EBA}=180^0\\ \Rightarrow\widehat{AIK}=\widehat{EBA}\\ \Rightarrow\widehat{ACK}=\widehat{EBA}\\ Tương.tự.ta.có:\widehat{CAO}=\widehat{KEB}\\ \Rightarrow\Delta ACK=\Delta EBK\left(g-g\right)\)
\(\rightarrow\dfrac{AC}{EB}=\dfrac{CK}{KB}=\dfrac{AK}{EK}\Rightarrow EK.CK=AK.KB\\ =\dfrac{\left(EK+KC\right)^2}{4}=\dfrac{\left(AK+KB\right)^2}{4}=\dfrac{AB^2}{4}\\ \Rightarrow EK+KC=AB\\ Dấu"="\Leftrightarrow\\ EA=KC\Rightarrow\Delta CKE.cân.tại.K\\ \Rightarrow Sđ\widehat{BE}=Sđ\widehat{AC}\\ \Rightarrow E\in\widehat{BC}.sao.cho.Sđ\widehat{BE}=Sđ\widehat{AC}.hay.BE=AC\)
1. Xét tam giác AEB có: AB là đường kính \(\Rightarrow\Delta AEB\) vuông tại E
Xét tứ giác HFEB có: \(\left\{{}\begin{matrix}\widehat{FHB}=90^o\\\widehat{FEB}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{FHB}+\widehat{FEB}=180^o\)
\(\Rightarrow\)Tứ giác HFEB nội tiếp đường tròn (đpcm)
2. Xét tam giác ABC có: đường kính AB \(\Rightarrow\Delta ABC\) vuông tại C
\(\Rightarrow AC^2=AH.AB\)
Mà \(\Delta AHF\sim\Delta AEB\) \(\Rightarrow AC^2=AF.AE\) (đpcm)
3. Câu này mình chịu @@
a: góc MEO+góc MFO=90+90=180 độ
=>MEOF nội tiếp
b: Xét ΔMEP và ΔMQE có
góc MEP=góc MQE
góc EMP chung
=>ΔMEP đồng dạng với ΔMQE
=>ME/MQ=MP/ME
=>ME^2=MQ*MP