Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một cách tổng quát:
- {\displaystyle \mathbb {Q} =\left\{x|x={\frac {m}{n}};m\in \mathbb {Z} ,n\in \mathbb {Z^{*}} \right\}}
1.Số hữu tỉ là số viết được dưới dạng phân số \(\frac{a}{b}\)với a,b là số nguyên và b khác 0.Tập hợp các số hữu tỉ được kí hiệu là Q.
2.Ta có thể biểu diễn mọi số hữu tỉ trên trục số.Trên trục số, điểm biểu diễn số hữu tỉ x được gọi là điểm x.
3.Ta có thể so sánh 2 số hữu tỉ bằng cách viết chúng dưới dạng phân số rồi so sánh 2 phân số đó.Nếu x<y thì điểm xở bên trái điểm y.
4.Số hữu tỉ lớn hơn 0 gọi là số hữu tỉ dương.
Số hữu tỉ nhỏ hơn 0 gọi là số hữu tỉ âm.
Số hữu tỉ 0 không là số hữu tỉ dương, cũng không là số hữu tỉ âm
1 . Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn
2 . Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn
Số thập phân hữu hạn, số thập phân vô hạn tuần hoàn
- Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn
- Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn
Số thập phân vô hạn tuần hoàn là số hữu tỉ vì chúng đều viết lại đc dưới dạng phân số
Ta có thể cộng, trừ hai số hữu tỉ x,y bằng cách viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi áp dụng quy tắc cộng, trừ phân số. Phép cộng số hữu tỉ có các tính chất của phép cộng phân số : giao hoán, kết hợp, cộng với số 0. Mỗi số hữu tỉ đều có một số đối.
Với \(x=\frac{a}{m},y=\frac{b}{m}\left(a,b,m\in Z,m>0\right),\), ta có:
\(x+y=\frac{a}{m}+\frac{b}{m}=\frac{a+b}{m}\)
\(x-y=\frac{a}{m}-\frac{b}{m}=\frac{a-b}{m}\)
Định nghĩa số hữu tỉ
Số hữu tỉ là số viết được dưới dạng phân số ab với a, b ϵZ và b≠0
Kí hiệu
Tập hợp các số hữu tỉ được kí hiệu là Q
Cách viết
Số hữu tỉ bao gồm số thập phân hữu hạn, số thập phân vô hạn tuần hoàn, tập hợp số nguyên. Bởi vậy, một số hữu tỉ có thể viết ở nhiều dạng: số thập phân, phân số. Đặc biệt với số hữu tỉ âm, có thể có 3 cách viết
VD: Nêu ba cách viết của số hữu tỉ -3/5?
- Dạng phân số có thể viết: -3/5; 3/-5
- Dạng số thập phân: -0,6
Thế nào là số hữu tỉ dương? số hữu tỉ âm?
- Số hữu tỉ lớn hơn 0 là số hữu tỉ dương
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm
- Số 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.
So sánh hai số hữu tỉ
Với hai số hữu tỉ x, y ta luôn có: x = y hoặc x > y hoặc x < y
Phương pháp so sánh hai số hữu tỉ x, y:
- Bước 1: Chuyển hai số hữu tỉ x, y thành hai phân số.
- Bước 2: So sánh hai phân số.
Ví dụ: So sánh hai số hữu tỉ sau x=2−7 và y=−311
Ta có: x=2−7=−2277
y=−311=−2177
Vì –22<–21⇒x<y⇒2−7<−311
>> Xem thêm: Các phép toán với số hữu tỉ – cộng, trừ, nhân, chia số hữu tỉ như thế nào?
Số vô tỉ
Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
Ký hiệu: Tập hợp các số vô tỉ được kí hiệu là I
Ví dụ luyện tập
Ví dụ 1: Trong các phân số sau, phân số nào biểu diễn số hữu tỉ: 3−4, −1215, −1520, 24−32, −2028, −2736
Giải:
Ta có: −1520=−15÷520÷5=−34
24−32=24÷8−32÷8=3−4
27−36=27÷9−36÷9=3−4
−1215=−35 ; −2028=−57
Vậy những phân số biểu diễn −34 là −1520; 24−32; −2736
Ví dụ 2: So sánh các số hữu tỉ ab với a, b thuộc Z, b≠0. Với số 0 khi a, b cùng dấu và khi a, b khác dấu.
Giải: Ta có: ab=a.1b
Khi a, b cùng dấu:
Nếu a>0 và b>0 suy ra: 1b>0
Nên: a.1b>0 vậy ab>0
Nếu a < 0 và b < 0 suy ra: 1b<0
Nên: a.1b>0 vậy ab>0
Khi a, b khác dấu:
Nếu a > 0 và b < 0 suy ra: 1b<0
Nên: a.1b<0 vậy ab<0
Nếu a < 0 và b > 0 suy ra: 1b>0
Nên: a.1b<0 vậy ab<0
Ví dụ 3: Giả sử x=am và y=bm (a,b,mϵZ,m≠0) và x < y. Hãy chứng tỏ rằng nếu chọn z=a+b2m thì ta có x < z < y.
Giải:
Ta có: x < y hay am<bm => a < b
So sánh x, y, z ta chuyển chúng cùng mẫu: 2m
x=am=2a2m và y=bm=2b2m và z=a+b2m
Mà: a<b suy ra: a+a<b+ahay 2a < a + b suy ra x<z (1)
Với: a<b suy ra: a+b<b+b
hay a+b<2b suy ra z<y (2)
Từ (1) và (2), kết luận: x<z<y
Định nghĩa số hữu tỉ
Số hữu tỉ là số viết được dưới dạng phân số ab với a, b ϵZ và b≠0
Kí hiệu
Tập hợp các số hữu tỉ được kí hiệu là Q
Cách viết
Số hữu tỉ bao gồm số thập phân hữu hạn, số thập phân vô hạn tuần hoàn, tập hợp số nguyên. Bởi vậy, một số hữu tỉ có thể viết ở nhiều dạng: số thập phân, phân số. Đặc biệt với số hữu tỉ âm, có thể có 3 cách viết
VD: Nêu ba cách viết của số hữu tỉ -3/5?
- Dạng phân số có thể viết: -3/5; 3/-5
- Dạng số thập phân: -0,6
Thế nào là số hữu tỉ dương? số hữu tỉ âm?
- Số hữu tỉ lớn hơn 0 là số hữu tỉ dương
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm
- Số 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.
So sánh hai số hữu tỉ
Với hai số hữu tỉ x, y ta luôn có: x = y hoặc x > y hoặc x < y
Phương pháp so sánh hai số hữu tỉ x, y:
- Bước 1: Chuyển hai số hữu tỉ x, y thành hai phân số.
- Bước 2: So sánh hai phân số.
Ví dụ: So sánh hai số hữu tỉ sau x=2−7 và y=−311
Ta có: x=2−7=−2277
y=−311=−2177
Vì –22<–21⇒x<y⇒2−7<−311
>> Xem thêm: Các phép toán với số hữu tỉ – cộng, trừ, nhân, chia số hữu tỉ như thế nào?
Số vô tỉ
Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
Ký hiệu: Tập hợp các số vô tỉ được kí hiệu là I
Ví dụ luyện tập
Ví dụ 1: Trong các phân số sau, phân số nào biểu diễn số hữu tỉ: 3−4, −1215, −1520, 24−32, −2028, −2736
Giải:
Ta có: −1520=−15÷520÷5=−34
24−32=24÷8−32÷8=3−4
27−36=27÷9−36÷9=3−4
−1215=−35 ; −2028=−57
Vậy những phân số biểu diễn −34 là −1520; 24−32; −2736
Ví dụ 2: So sánh các số hữu tỉ ab với a, b thuộc Z, b≠0. Với số 0 khi a, b cùng dấu và khi a, b khác dấu.
Giải: Ta có: ab=a.1b
Khi a, b cùng dấu:
Nếu a>0 và b>0 suy ra: 1b>0
Nên: a.1b>0 vậy ab>0
Nếu a < 0 và b < 0 suy ra: 1b<0
Nên: a.1b>0 vậy ab>0
Khi a, b khác dấu:
Nếu a > 0 và b < 0 suy ra: 1b<0
Nên: a.1b<0 vậy ab<0
Nếu a < 0 và b > 0 suy ra: 1b>0
Nên: a.1b<0 vậy ab<0
Ví dụ 3: Giả sử x=am và y=bm (a,b,mϵZ,m≠0) và x < y. Hãy chứng tỏ rằng nếu chọn z=a+b2m thì ta có x < z < y.
Giải:
Ta có: x < y hay am<bm => a < b
So sánh x, y, z ta chuyển chúng cùng mẫu: 2m
x=am=2a2m và y=bm=2b2m và z=a+b2m
Mà: a<b suy ra: a+a<b+ahay 2a < a + b suy ra x<z (1)
Với: a<b suy ra: a+b<b+b
hay a+b<2b suy ra z<y (2)
Từ (1) và (2), kết luận: x<z<y
Quạt điện chủ yếu hoạt động dựa vào tác dụng từ của dòng điện!
Chúc bạn học tốt
1)có tồn tại hai số tự nhiên a và b sao cho
a)56a +45b =3658
b)400a + 84b = 40002
2)tìm x thuộc N biết
a)n + 6 chia hết cho n+2
b) 2n + 3 chia hết cho n+2
nó đó
Khái niệm về biểu thức đại số
Những biểu thức bao gồm các phép toán cộng, trừ, nhân, chia, nâng lên lũy thừa không chỉ trên những số mà còn có thể trên những chữ được gọi là biểu thức đại số.
Mik nghĩ :
Biểu thức đại số là các số được nối với nhau bởi dấu các phép tính
( cộng , trừ , nhân , chia , nâng lũy thừa ..) làm thành 1 biểu thức
Chúc bn hok tốt !!
Trả lời:
Hệ số tỉ lệ là một hằng số khác 0 luôn không đổi
Hệ số tỉ lệ ở trong bài 2 đại lượng tỉ lệ thuận và tỉ lệ nghịch
Học tốt
Trong vật lý, đặc biệt là trong cơ học thống kê, đảo ngược mật độ xảy ra khi một hệ thống (chẳng hạn như một nhóm nguyên tử hoặc phân tử) tồn tại ở một trạng thái mà số hạt (nguyên tử hoặc phân tử) ở trạng thái năng lượng kích thích nhiều hơn số hạt ở trạng thái năng lượng cơ bản. Khái niệm này đóng một vai trò quan trọng trong khoa học laser, bởi vì đảo ngược mật độ là một bước cơ bản của một máy phát laser tiêu chuẩn.