Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: m ≠ 0 và m ≠ 3/2
a) Đồ thị hai hàm số đã cho là hai đường thẳng song song khi:
m = 3 - 2m
m + 2m = 3
3m = 3
m = 1 (nhận)
Vậy m = 1 thì đồ thị hai hàm số đã cho là hai đường thẳng song song
b) Đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau khi
m ≠ 3 - 2m
m + 2m ≠ 3
3m ≠ 3
m ≠ 1
Vậy m ≠ 0; m ≠ 1 và m ≠ 3/2 thì đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau
a) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) song song với nhau thì \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2m = 2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2:2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\ - 5 \ne 1\end{array} \right.\left( {tm} \right)\)
Vậy \(m = 1\) thì hai đường thẳng \(y = 2mx - 5\) và \(y = 2x + 1\) song song với nhau.
b) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) cắt nhau thì \(a \ne a' \Rightarrow 2m \ne 2 \Leftrightarrow m \ne 2:2 \Leftrightarrow m \ne 1\).
Điều kiện: m ≠ 0, 2m + 1 ≠ 0, hay m ≠ 0 và m ≠ $-\frac{1}{2}$.
a) Hai đường thẳng đã cho song song khi m = 2m + 1,suy ra m = -1. Giá trị này thoả mãn điều kiện m ≠ 0 và m ≠ $-\frac{1}{2}$. Vậy giá trị m cần tìm là m = −1.
b) Hai đường thẳng cắt nhau khi m ≠ 2m + 1, hay m ≠ −1. Kết hợp với điều kiện m ≠ 0 và m ≠ $-\frac{1}{2}$, ta được m ≠ 0, m ≠ −1 và m ≠ $-\frac{1}{2}$.
a) Hai đường thẳng song song khi a = a′ => 2m = m−1 => m = −1
b) Hai đường thẳng cắt nhau khi a ≠ a′ => 2m ≠ m − 1 => m ≠ −1
Đồ thị hai hàm số \(y = 2mx - 2\) và \(y = 6x + 3\) song song với nhau khi:
\(\left\{ \begin{array}{l}2m = 6\\ - 2 \ne 3\end{array} \right. \Rightarrow 2m = 6 \Leftrightarrow m = 6:2 \Leftrightarrow m = 3\)
Vậy \(m = 3\) thì đồ thị hai hàm số \(y = 2mx - 2\) và \(y = 6x + 3\) song song với nhau.
Để hai hàm số song song:
=> 2m=6 <=> m=3
a, Với \(m\ne2\)
d đi qua A(0;5) <=> \(m=5\)(tm)
b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><
d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)
Đáp án đúng là D
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = - \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - 3x + 2\) là đường thẳng có hệ số góc là \(a = - 3\).
Vì cả ba đường thẳng đều có hệ số góc khác nhau nên chúng cắt nhau.
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
- Đồ thị hàm số \(y = - 3x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
Do đó điểm \(A\left( {0;2} \right)\) là giao điểm của ba đồ thị hàm số.
Vậy đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
b, xét pt hoành độ giao điểm:
-x²=4x+m
=> x²+4x+m=0
a=1. b= 4. c=m
Để pt có 2 No pb=> ∆>0
<=>4²-4×1×m>0
<=>16-4m>0
<=> -4m>-16
<=> m<16÷4=4
Vậy m=4 pt có 2No pb
Đồ thị hai hàm số \(y = kx - 1\) và \(y = 4x + 1\) cắt nhau khi: \(k \ne 4\).
Vậy để đồ thị hai hàm số \(y = kx - 1\) và \(y = 4x + 1\) cắt nhau thì \(k \ne 4\).
Đường thẳng \(d:y = x + 2023\) có \(a = 1;b = 2023\).
- Gọi \({d_1}:y = {a_1}x + {b_1}\) là đường thẳng cần tìm thứ nhất. Vì \({d_1}\) song song với \(d\) nên \(\left\{ \begin{array}{l}a = {a_1}\\b \ne {b_1}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}1 = {a_1}\\2023 \ne {b_1}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = 1\\{b_1} \ne 2023\end{array} \right.\). Ta chọn \({b_1} = 25\)
Ta có đường thẳng \({d_1}:y = x + 25\).
Vậy hàm số thứ nhất cần tìm là \(y = x + 25\)
- Gọi \({d_2}:y = {a_2}x + {b_2}\) là đường thẳng cần tìm thứ hai. Vì \({d_2}\) song song với \(d\) nên \(\left\{ \begin{array}{l}a = {a_2}\\b \ne {b_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}1 = {a_2}\\2023 \ne {b_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_2} = 1\\{b_2} \ne 2023\end{array} \right.\). Ta chọn \({b_2} = 5\)
Ta có đường thẳng \({d_2}:y = x + 5\).
Vậy hàm số thứ hai cần tìm là \(y = x + 5\).
Lời giải:
a. Để 2 đt song óng với nhau thì:
$3m=2m+1$
$\Leftrightarrow m=1$
b.
Để 2 đt cắt nhau:
$3m\neq 2m+1$
$\Leftrightarrow m\neq 1$
a: Để hai đồ thị hàm số y=3mx-2 và y=(2m+1)x+3 song song thì
\(\left\{{}\begin{matrix}3m=2m+1\\-2\ne3\left(đúng\right)\end{matrix}\right.\)
=>3m=2m+1
=>m=1
b: Để hai đồ thị hàm số y=3mx-2 và y=(2m+1)x+3 cắt nhau thì \(3m\ne2m+1\)
=>\(m\ne1\)