K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

a: \(\Leftrightarrow3x^3-x^2+3x^2-x-6x+2-a-2⋮3x-1\)

=>-a-2=0

hay a=-2

b: \(-x^2+x-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)

c: \(P\left(x\right)=x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi x=5/2

d: \(f\left(x\right)=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=2

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

câu 1:

x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)

6 tháng 1 2019

Câu 2 :

a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)

\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)

\(=x^2-2x+1\)

b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)

\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)

Câu 3 :

Sửa đề :

\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)

14 tháng 8 2018

\(A=x^2+12x+36=\left(x+6\right)^2\)

\(B=x^2+4xy+4y^2=\left(x+2y\right)^2\)

\(C=\left(3x-7\right)^2+10\left(3x-7\right)+25=\left(3x-2\right)^2\)

\(D=8x^3-12x^2+6x-1=\left(2x-1\right)^3\)

Việc còn lại bạn tự thay vào rồi tính thôi :v

14 tháng 8 2018

\(A=x^2+12x+36\)

\(A=x^2+2.x.6+6^2\)

\(A=\left(x+6\right)^2\)

Thay x = 64 ta được

\(A=\left(64+6\right)^2\)

\(A=70^2\)

\(A=4900\)

\(B=x^2+4xy+4y^2\)

\(B=x^2+2.x.2y+\left(2y\right)^2\)

\(B=\left(x+2y\right)^2\)

Thay x = 2,8 và y = 3,6 ta được

\(B=\left(2,8+2.3,6\right)^2\)

\(B=\left(2,8+7,2\right)^2\)

\(B=10^2\)

\(B=100\)

\(C=\left(3x-7\right)^2+10\left(3x-7\right)+25\)

\(C=\left(3x-7\right)^2+2.\left(3x-7\right).5+5^2\)

\(C=\left(3x-7+5\right)^2\)

\(C=\left(3x-2\right)^2\)

Thay x = 16 ta được

\(C=\left(3.16-2\right)^2\)

\(C=\left(48-2\right)^2\)

\(C=46^2\)

\(C=2116\)

\(D=8x^3-12x^2+6x-1\)

\(D=\left(2x\right)^3-3.\left(2x\right)^2+3.\left(2x\right)-1^3\)

\(D=\left(2x-1\right)^3\)

Thay x = -1/2 ta được

\(D=\left[2.\left(-\dfrac{1}{2}\right)-1\right]^3\)

\(D=\left(-1-1\right)^3\)

\(D=\left(-2\right)^3\)

\(D=-8\)

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)