\(\dfrac{x+3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

Bài 1.

a) (3x - 2)(4x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy........................

b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\left(x\ne0;x\ne-1\right)\)

\(\Leftrightarrow\) \(\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow\) x2 + 3x + x2 + x - 2x - 2 = 2x2 + 2x

\(\Leftrightarrow\) 2x2 + 2x - 2x2 - 2x = 2

\(\Leftrightarrow\) 0 = 2 (vô lí)

Vậy phương trinh vô no

Bài 2

a) 5x - 2 < 4x + 6

\(\Leftrightarrow\) 5x - 4x < 2 + 6

\(\Leftrightarrow\) x < 8

Vậy....................

b) \(\dfrac{x-3}{5}+1>2x-5\)

\(\Leftrightarrow\) \(\dfrac{x-3+5}{5}>\dfrac{5\left(2x+5\right)}{5}\)

\(\Leftrightarrow\) x + 2 > 10x + 25

\(\Leftrightarrow\) -25 + 2 > 10x - x

\(\Leftrightarrow\) -23 > 9x

\(\Leftrightarrow\) x < \(-\dfrac{23}{9}\)

Vậy.............................

Bài 3

Goi x(km) là quãng đường AB (x>0)

Thời gian ô tô đi đến tỉnh B là: \(\dfrac{x}{40}\)(giờ)

Thời gian ô tô về tỉnh A là: \(\dfrac{x}{30}\)(giờ)

Do cả đi lẫn về mất 10h30' = \(\dfrac{21}{2}\)h nên ta có phương trình:

\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{21}{2}\)

\(\Leftrightarrow\) \(\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{1260}{120}\)

\(\Leftrightarrow\) 3x + 4x = 1260

\(\Leftrightarrow\) 7x = 1260

\(\Leftrightarrow\) x = 180 (tm)

Vậy quãng đường dài 180 km

28 tháng 4 2018

Bài 4.

A B D C H

a) Trong \(\Delta\)ABC có AD là p/giác của góc A

\(\Rightarrow\) \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) = \(\dfrac{8}{6}=\dfrac{4}{3}\)

b) Xét \(\Delta\) AHB và \(\Delta\) CAB có:

\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\)\(\Delta\)AHB đồng dạng với \(\Delta\)CAB (1)

Xét \(\Delta\) CHA và \(\Delta\)CAB có:

\(\widehat{AHC}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{C}\) là góc chung

\(\Rightarrow\) \(\Delta\) CHA đồng dạng vs \(\Delta\)CAB (2)

Từ (1) và (2)

\(\Rightarrow\) \(\Delta\)CHA đồng dạng vs \(\Delta\)AHB

c) Trong \(\Delta\)ABC vuông tại A có:

BC2 = AB2 + AC2

= 82 + 62

= 100

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

\(\Delta\) ABH đồng dạng vs \(\Delta\)CAB (cmt)

\(\Rightarrow\) \(\dfrac{AB}{AC}=\dfrac{BH}{AB}\)

\(\Rightarrow\) BH = \(\dfrac{AB^2}{AC}\) = \(\dfrac{8^2}{6}\) = \(\dfrac{32}{3}\)

\(\Delta\)CHA đồng dạng vs \(\Delta\)CAB

\(\Rightarrow\) \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\) CH = \(\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}\)

Ta có:

\(\dfrac{S_{AHB}}{S_{CHA}}=\dfrac{\dfrac{1}{2}AH.BH}{\dfrac{1}{2}AH.CH}=\dfrac{BH}{CH}=\dfrac{\dfrac{32}{3}}{\dfrac{18}{5}}=\dfrac{80}{27}\)

14 tháng 3 2017

  1  14-3x=-2+5x

<=>-3x-5x = -2-14

<=> -8x        =-16

<=>        x    =-16/-8=2

14 tháng 3 2017

mấy bạn ơi...các phương trình trên nó bị lặp lại nhak....ptrinh day ni:

a)\(14-3x=-2+5x\)

b) \(3\times\left(5x+2\right)-x\times\left(5x+2\right)=0\)

c) \(\frac{2x}{3}+\frac{3x-1}{6}=4-\frac{x}{3}\)

d) \(\frac{3-x}{x-2}+\frac{x+1}{x+2}=\frac{3x}{x^2-4}\)

20 tháng 5 2018

1a)

\(\hept{\begin{cases}2x-2017=1\\12x-2017=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=2018\\12x=2018\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1009\\x=\frac{1009}{6}\end{cases}}\)

Em  nghĩ là như vậy . Nếu có gì em sẽ sửa.

20 tháng 5 2018

Gọi số thứ nhất là a ( 0 < a < 125 )

Số thứ hai là 4a

Ta có phương trình :

\(a+4a=125\)

\(\Leftrightarrow5a=125\)

\(\Leftrightarrow a=25\left(tm\right)\)

Vậy số thứ 1 là 25

Số thứ 2 = 25 x 4 = 100

Vậy ...

19 tháng 4 2018

3) 9h30phút-30phút=9h

Gọi x(km) là quãng đường từ A đến B (ĐK X>0)

Thời gian xe đi từ A đến B là \(\dfrac{X}{15}\)(h)

Thời gian xe đi từ B đến A là \(\dfrac{X}{12}\)(h)

Theo đề bài ta có phương trình :

\(\dfrac{x}{15}+\dfrac{x}{12}=9\)

Giải pt:\(\dfrac{X}{15}+\dfrac{x}{12}=9\Leftrightarrow\dfrac{4x}{60}+\dfrac{5x}{60}=\dfrac{540}{60}\Rightarrow4x+5x=540\Leftrightarrow9x=540\Leftrightarrow x=60\)

Vậy quãng đường từ A đến B là 60 km

19 tháng 4 2018

\(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\Leftrightarrow15x-9x+6=45-10x+25\Leftrightarrow16x=64\Leftrightarrow x=4\)

3 tháng 3 2020

a) ta có: \(|4x^2-1|\ge0\forall x\)

\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)

Mà \(|4x^2-1|+3x|2x-1|=0\)

=> I4x^2-1I và 3xI2x-1I=0

=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0

=> 4x^2=1 và x=0 hoặc 2x=1

=> x^2=1/4 và x=0 hoặc x=1/2

=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2

Vậy x=\(\pm\frac{1}{2}\); x=0

3 tháng 3 2020

Phạm Nhật Quỳnh

Bạn xem lại nhé x chưa chắc đã dương nha 

Đây là đề thi hsg lớp 8..mong các bạn giúp đỡ mình ạCÂU 1:giải phương trình\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)\(0\)CÂU 2:a)Tìm x thuộc Z để A thuộc Z .A=\(\frac{\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right)}{\frac{x^2}{2x^2+x}}\)b)cho 3 số a,b,c thỏa mãn:\(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\). Tìm Giá trị nhỏ nhất của biểu thức:B=\(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\) ...
Đọc tiếp

Đây là đề thi hsg lớp 8..mong các bạn giúp đỡ mình ạ

CÂU 1:giải phương trình

\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)\(0\)

CÂU 2:a)Tìm x thuộc Z để A thuộc Z .A=\(\frac{\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right)}{\frac{x^2}{2x^2+x}}\)

b)cho 3 số a,b,c thỏa mãn:\(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\). Tìm Giá trị nhỏ nhất của biểu thức:B=\(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)   

CÂU 3:Một canô xuôi dòng 9 km và quay trở về đi ngược dòng đến một địa điểm cách chỗ xuất phát ban đầu 1 km thì dừng lại .Tính vận tốc của canô khi nước yên lặng biết vận tốc dòng nước là 2 km /h,, thời gian xuôi dòng ít hơn thời gian ngược dòng là 15 phút   

CÂU 4: Cho tam giác ABC có 3 góc nhọn. các điểm M,N lần lượt là trung điểm  của BC,AC.Gọi H,O,G theo thứ tự là trực tâm , giao điểm các đường trung trực, trọng tâm của tam giác ABC.Chứng minh:a)tam giác AHB đồng dạng với tam giác MON

b)tam giác HAG đồng dạng với tam giác OMG

c)3 điểm H ,G,O thẳng hàng 

CÂU 5:a) chứng minh rằng với mọi số nguyen dương n thì:

S\(=1^3+2^3+3^3+....+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)  

b) chứng minh rằng với mọi n thuộc N thì :A=n(n+1)(n+2)(n+3)+1 là một số chính phương

2
6 tháng 4 2017

Câu 1: 

\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)

\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)

\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)

\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)

\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)

\(\Leftrightarrow x=-2013\)

Câu 2:

b)Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Đẳng thức xảy ra khi \(a=b=c\)

Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)

\(B=3a^2-6a+2017=3a^2-6a+3+2014\)

\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(a=1\)

Lại có \(a=b=c\Rightarrow a=b=c=1\)

Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)

Câu 5:

\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)

Với \(n=1;n=2\) (*) đúng

Giả sử (*) đúng với n=k khi đó (*) thành:

\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có: 

\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

Đẳng thức cần chứng minh tương đương với:

\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

Theo nguyên lí quy nạp ta có Đpcm

Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(t=n^2+3n\) thì ta có: 

\(A=t\left(t+2\right)+1=t^2+2t+1\)

\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)

7 tháng 4 2017

thks bạn

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).