Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\left(3+\sqrt{5}\right)\left(\sqrt{\left(3-\sqrt{5}\right)^2}\right)\)=\(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)
b)= \(\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{\sqrt{2^2.7}}{2}-2\)=\(\frac{2\left(3-\sqrt{7}\right)}{9-7}+\sqrt{7}-2\)=1
c) =\(\frac{3}{3\left(\sqrt{7}-2\right)}-\frac{3}{3\left(\sqrt{7}+2\right)}\)=\(\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}=\frac{\sqrt{7}+2-\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}\)=\(\frac{4}{7-4}=\frac{4}{3}\)
d) =\(\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)^{ }\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{\left(88-44\sqrt{3}\right)}{25-3}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{22\left(4-2\sqrt{3}\right)}{22}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(1+\sqrt{3}\right)\left(\sqrt{3}-1\right)\)=3-1 = 2
e) = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{7\sqrt{x}-3}{x-9}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\)= \(\frac{x-4\sqrt{x}+3}{x-9}+\frac{7\sqrt{x}-3}{x-9}+\sqrt{x}\)= \(\frac{x+3\sqrt{x}}{x-9}+\sqrt{x}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\sqrt{x}\)= \(\frac{\sqrt{x}}{\sqrt{x}-3}+\sqrt{x}=\frac{x-2\sqrt{x}}{\sqrt{x}-3}\)
a: \(=\sqrt{11}-1\)
b: \(=3\sqrt{3}+1\)
c: \(=\sqrt{3}+\sqrt{2}\)
d: \(=\sqrt{3}-\sqrt{2}\)
e: \(=\sqrt{3}-1\)
g: \(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)
\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}-1+2-\sqrt{3}=1\)
\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)
\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)
\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
d, ĐKXĐ: \(x\ge-\frac{1}{4}\)
\(pt\Leftrightarrow4x^2+4x+2=2\sqrt{4x+1}\)
\(\Leftrightarrow4x^2+\left(4x+1-2\sqrt{4x+1}+1\right)=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=0\\\sqrt{4x+1}-1=0\end{matrix}\right.\Leftrightarrow x=0\left(tm\right)\)
a, ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\sqrt{x+1}+\sqrt{x+8}=7\)
\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+8}\right)^2=49\)
\(\Leftrightarrow x+1+x+8+2\sqrt{\left(x+1\right)\left(x+8\right)}=49\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+8\right)}=20-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}20-x\ge0\\\left(x+1\right)\left(x+8\right)=\left(20-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le20\\49x=392\end{matrix}\right.\Leftrightarrow x=8\left(tm\right)\)
b, ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\frac{x-3}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Do \(\frac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}>0,\forall x\ge-1\)
Nên \(x=3\left(tm\right)\)
c, ĐKXĐ: \(x\ge-\frac{3}{2}\)
\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\)
b: \(\Leftrightarrow\sqrt{25x-75}=x+3\)
=>25x-75=x^2+6x+9 và x>=-3
=>x^2+6x+9-25x+75=0 và x>=-3
=>x^2-19x+84=0 và x>=-3
=>\(x\in\varnothing\)
c: \(\Leftrightarrow x+1+4\cdot3x+4\sqrt{3x\left(x+1\right)}=64\)
=>\(4\sqrt{3x\left(x+1\right)}=64-12x-x-1=-13x+63\)
=>\(48x\left(x+1\right)=\left(-13x+63\right)^2\)
=>\(48x^2+48x=169x^2-1638x+3969\)
=>x=1323/121 hoặc x=3
ĐKXĐ : \(x\le28\)
Đặt \(\sqrt[3]{x+5}=a;\sqrt{28-x}=b\left(b\ge0;a\le7\right)\)
Được a + b = 7 <=> b = 7 - a
Lại có a3 + b2 = 33
<=> a3 + (7 - a)2 = 33
<=> a3 + a2 - 14a + 16 = 0
<=> a3 - 8 + a2 - 2a - 12a + 24 = 0
<=> (a - 2)(a2 + 3a - 8) = 0
<=> \(\left[{}\begin{matrix}a=2\\a^2+3a-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=2\\a=\dfrac{\pm\sqrt{41}-3}{2}\end{matrix}\right.\)
Khi a = \(\dfrac{\sqrt{41}-3}{2}\Leftrightarrow b=\dfrac{17-\sqrt{41}}{2}\)
<=> \(x=28-\left(\dfrac{17-\sqrt{41}}{2}\right)^2=\dfrac{17\sqrt{41}-109}{2}\)(tm)
Khi a = \(\dfrac{-\sqrt{41}-3}{2}\Leftrightarrow b=\dfrac{17+\sqrt{41}}{2}\)
\(x=28-\left(\dfrac{17+\sqrt{41}}{2}\right)^2=\dfrac{-17\sqrt{41}-109}{2}\) (tm)
a = 2 => x = 3 (tm)
Vậy tập nghiệm phương trình \(S=\left\{\dfrac{-17\sqrt{41}-109}{2};\dfrac{17\sqrt{41}-109}{2};3\right\}\)