2−√3                 ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì 2-căn 3>0 nên số này có căn bậc hai số học

b: Vì 4-căn 15>0 nên số này có căn bậc hai số học

c: Vì \(2\sqrt{3}-\sqrt{6}-1>0\)

nên số này có căn bậc hái số học

d: \(3\sqrt{2}-2\sqrt{5}+1>0\)

nên số này có căn bậc hai số học

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lời giải:

Một số không âm thì sẽ có căn bậc 2 số học nên chỉ cần chứng minh biểu thức không âm là được

1.

$2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$ nên biểu thức có CBHSH

2.

$4-\sqrt{15}=\sqrt{16}-\sqrt{15}>0$ nên biểu thức có CBHSH

3.

$(2\sqrt{3})^2=12$
$(\sqrt{6}+1)^2=7+2\sqrt{6}=7+\sqrt{24}< 7+\sqrt{25}=12$

$\Rightarrow (2\sqrt{3})^2>(\sqrt{6}+1)^2\Rightarrow 2\sqrt{3}>\sqrt{6}+1$

$\Rightarrow 2\sqrt{3}-\sqrt{6}-1>0$ nên có CBHSH

4.

$(2\sqrt{5})^2=20$

$(3\sqrt{2}+1)^2=19+6\sqrt{2}>19+1=20$

$\Rightarrow (2\sqrt{5})^2< (3\sqrt{2}+1)^2\Rightarrow 2\sqrt{5}< 3\sqrt{2}+1$

$\Rightarrow 3\sqrt{2}-2\sqrt{5}+1>0$ nên có CBHSH

5.
$\sqrt{26}>\sqrt{25}=5$

$\sqrt{37}>\sqrt{36}=6$

$\Rightarrow 11-\sqrt{26}-\sqrt{37}=(5-\sqrt{26})+(6-\sqrt{37})< 0$ nên không có CBHSH

6.

$\sqrt{26}>\sqrt{25}=5$

$\sqrt{17}>\sqrt{16}=4$

$\Rightarrow \sqrt{26}+\sqrt{17}+1>10=\sqrt{100}>\sqrt{99}$

$\Rightarrow \sqrt{26}+\sqrt{17}+1-\sqrt{99}>0$ nên có CBHSH

a: \(\sqrt{17}+\sqrt{26}=\dfrac{9}{\sqrt{26}-\sqrt{17}}>9\)

e: \(\sqrt{13}-\sqrt{12}=\dfrac{1}{\sqrt{13}+\sqrt{12}}\)

\(\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

mà \(\sqrt{13}+\sqrt{12}>\sqrt{11}+\sqrt{12}\)

nên \(\sqrt{13}-\sqrt{12}< \sqrt{12}-\sqrt{11}\)

d: \(9-\sqrt{58}=\sqrt{49}-\sqrt{58}< 0< \sqrt{80}-\sqrt{59}\)

2 tháng 8 2018

a) \(3=\sqrt{9}\) > \(\sqrt{7}\)

=> \(3\) > \(\sqrt{7}\)

b) +) \(5\sqrt{2}=\sqrt{50}\)

+)\(2\sqrt{5}=\sqrt{20}\)

\(\sqrt{50}>\sqrt{20}\)

=> \(5\sqrt{2}>2\sqrt{5}\)

c) +) \(7=3+4\) \(=\sqrt{9}+\sqrt{16}\)

\(\sqrt{9}+\sqrt{16}>\sqrt{7}+\sqrt{15}\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

d) +) \(6-\sqrt{15}=\sqrt{36}-\sqrt{15}\)

\(\sqrt{36}-\sqrt{15}< \sqrt{37}-\sqrt{14}\)

=> \(\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)

e) +) 6 + \(2\sqrt{2}\) = \(6+\sqrt{8}\)

+) 6 + 3 = \(6+\sqrt{9}\)

vì 6 + \(\sqrt{8}\) < 6 + \(\sqrt{9}\)

=> 6 + \(2\sqrt{2}\) <\(6+3\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

a)

\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)

\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)

b)

\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)

\(\Rightarrow B=0\)

c)

\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

d)

\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)

\(=\sqrt{2}.1^2=\sqrt{2}\)

e)

\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)

\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)

f)

\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

27 tháng 9 2016

a. \(\frac{26}{5-2\sqrt{3}}\)=\(\frac{26\cdot\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}\)=\(\frac{26\cdot\left(5+2\sqrt{3}\right)}{5^2-\left(2\sqrt{3}\right)^2}=\frac{26\cdot\left(5+2\sqrt{3}\right)}{13}=2\cdot\left(5+2\sqrt{3}\right)=10+4\sqrt{3}\)

b.\(\frac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\frac{\sqrt{3}\cdot\left(3\sqrt{3}-2\right)}{\sqrt{2}\cdot\left(3\sqrt{3}-2\right)}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2}\)

c.\(\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\sqrt{5}\cdot\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\cdot\left(2\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{10}}{2}\)

d.\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)=\(4\sqrt{5}\)

 

30 tháng 6 2018

a, (3 + \(\sqrt{5}\))2 = 14+ \(6\sqrt{5}\) = 14 + \(\sqrt{180}\)

(\(2\sqrt{2}\) + \(\sqrt{6}\))2 = 14 + 4\(\sqrt{12}\) = 14 + \(\sqrt{192}\)

\(\left(3+\sqrt{5}\right)^2< \left(2\sqrt{2}+\sqrt{6}\right)^2\) (Do 14+\(\sqrt{180}\) < 14 + \(\sqrt{192}\))

Nên 3 + \(\sqrt{5}\) < 2\(\sqrt{2}\) + \(\sqrt{6}\) (Do \(\left(3+\sqrt{5}\right)^2< \left(2\sqrt{2}+\sqrt{6}\right)^2\))

b, c, d làm tương tự bạn nhé