Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do số đã cho là số lẻ nên ko chia hết cho 2
Do số đã cho có tận cùng khác 0, 5 nên ko chia hết cho 5
Gọi p là 1 số nguyên tố nào đó, với \(p\ne\left\{2;5\right\}\) \(\Rightarrow2^x.5^y\) nguyên tố cùng nhau p
\(\Rightarrow10^z\) nguyên tố cùng nhau với p với mọi z nguyên dương
Ta xét dãy gồm p+1 số có dạng:
1; 11; 111; ...; 111...11 (p+1 chữ số 1)
Theo nguyên lý Dirichlet, trong p+1 số trên có ít nhất 2 số có cùng số dư khi chia hết cho p
Giả sử đó là 111..11 (m chữ số 1) và 111...11 (n chữ số 1), với \(m< n\le p\)
\(\Rightarrow111...11\left(n\text{ chữ số 1}\right)-111...11\left(m\text{ chữ số 1}\right)\) chia hết cho p
\(\Rightarrow111...11000...00\left(a\text{ chữ số 1}\text{ và b chữ số 0}\right)\) chia hết cho p (với a<m)
\(\Rightarrow111...11.10^b\) chia hết cho p
Mà \(10^p\) nguyê tố cùng nhau với p
\(\Rightarrow111...11\left(a\text{ chữ số 1}\right)\) chia hết cho p
Vậy với mọi số nguyên tố p khác 2 và 5, luôn luôn tìm được ít nhất 1 số có dạng 111...11 chia hết cho p
\(\Rightarrow\) Mọi số nguyên tố, trừ 2 và 5, đều có thể là ước của số có dạng 111...11
làm kiểu đơn giản P={0...9)=P+2=...sau đó loại dần => p
Lập luận:
p phải lẻ=> 1,3,...
p không chia hết cho 3 => p=1,5,7
p chỉ có thể 3k +2 vì 3k+1 thì p+8 không nguyên tố
=> p=5 duy nhất có thể
với P=5; a=7;b=11; c=13 => nhận
ĐS: p=5
Xét 3 số tự nhiên liên tiếp p, p + 1, p + 2.
Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 3 => p + 1 phải chia hết cho 3 (1)
Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 2 => p + 1 phải chia hết cho 2 (2)
Từ (1) và (2) kết hợp với ƯCLN (3,2) = 1 => p + 1 chia hết cho 2.3 => p + 1 chia hết cho 6