Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
30 người → 8 giờ
40 người→ ? giờ
lời giải thì bn tự đặt nha! Bây giờ bn lấy 30 nhân cho 8 rồi chia cho 40 nha bn. Chúc bn thành công
a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)
\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)
2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)
Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)
3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)
4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)
Vậy \(x=3,y=-3,z=2\)
\(1.\) \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)
\(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)
\(=14\)
vậy P=14
\(2.\) \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)
\(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)
\(\Rightarrow|x+2|=4\)
\(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
vậy \(x\in\left\{2;-6\right\}\)
bài 1
ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)
2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)
\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)
\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+...+a_{0216}}{a_2+a_3+...+a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)
Ta có:
\(a< b,c< d,m< n\)
\(\Rightarrow a+c+m< b+d+n\Rightarrow2a+2c+2m< a+b+c+d+m+n\)
\(\Rightarrow a+c+m< \frac{1}{2}\left(a+b+c+d+m+n\right)\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) ( đpcm )
Giải:
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^o\) ( kề bù )
Mà \(\widehat{A_1}-\widehat{A_2}=60^o\)
\(\Rightarrow\widehat{A_1}=\left(180^o+60^o\right):2=120^o\)
\(\Rightarrow\widehat{A_2}=180^o-\widehat{A_1}=180^o-120^o=60^o\)
Vì a // b nên \(\widehat{B_1}=\widehat{A_1}=120^o\) ( so le trong )
\(\widehat{B_2}=\widehat{A_2}=60^o\) ( so le trong )
Vậy \(\widehat{B_1}=120^o,\widehat{B_2}=60^o\)
GT: a // b ; \(\widehat{A_1}\) - \(\widehat{A_2}\) = 60o
KL : \(\widehat{B_1}\) = ? ; \(\widehat{B_2}\) = ?
Ta có: \(\widehat{A_1}\) - \(\widehat{A_2}\) = 60o (gt) (1)
và \(\widehat{A_1}\) + \(\widehat{A_2}\) = 180o ( 2 góc kề bù) (2)
Từ (1) và (2)
\(\Rightarrow\) \(\widehat{A_1}\) = \(\frac{180^o+60^o}{2}\) = 120o
\(\widehat{A_2}\) = \(\frac{180^o-60^o}{2}\) = 60o
Vì a // b (gt) nên:
\(\Rightarrow\) \(\widehat{A_1}\) = \(\widehat{B_1}\) = 120o ( cặp góc so le trong)
\(\widehat{A_2}\) = \(\widehat{B_2}\) = 60o ( cặp góc so le trong)
Vậy \(\widehat{B_1}\) = 120o ; \(\widehat{B_2}\) = 60o