Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow x-3+\sqrt{x^2-3x+9}-3=\sqrt{x^2+2x+10}-5\)
\(\Leftrightarrow x-3+\frac{\sqrt{x\left(x-3\right)}}{\sqrt{x^2-3x+9}+3}=\frac{\sqrt{\left(x-3\right)\left(x+5\right)}}{\sqrt{x^2+2x+10}+5}\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x-3}+\frac{\sqrt{x}}{\sqrt{x^2-3x+9}+3}-\frac{\sqrt{x+5}}{\sqrt{x^2+2x+10}+5}\right)=0\)
\(\Rightarrow x=3\)
Cái pt to đùng đằng sau mk chưa giải đc có j bạn thông cảm nha
b, bạn kiểm tra lại đề nhé
c, \(\frac{x\sqrt{x}-8+2x-4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{x-4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-4\right)}{x-4}=\sqrt{x}+2\)
\(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)
ta lập phương hai vế có
\(x^3=7+\sqrt{\frac{49}{8}}+7-\sqrt{\frac{49}{8}}+3\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}x\)
\(< =>x^3=14+3\sqrt[3]{7^2-\frac{49}{8}}x\)
\(< =>x^3=14+3\sqrt[3]{\frac{343}{8}}x\)
\(< =>x^3=14+3.\frac{7}{2}x\)
\(< =>2x^3-21x-28=0\)
nên
\(fx=\left(2x^3-21x-29\right)^3=\left(2x^3-21x-28-1\right)^3=\left(-1\right)^3=-1\)
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\) (1)
ĐKXĐ: x >= -1
Đặt x -2 = a; \(\sqrt{x+1}=b\)
Có \(x^2+4x+12=x^2-4x+4+8x+8=\left(x-2\right)^2+8\left(x+1\right)\)
=> \(\sqrt{x^2+4x+12}=\sqrt{\left(x-2\right)^2+8\left(x+1\right)}=\sqrt{a^2+8b^2}\)
(1) => \(\sqrt{a^2+8b^2}=2a+b\)
<=> \(\hept{\begin{cases}2a+b\ge0\\a^2+8b^2=\left(2a+b\right)^2\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\3a^2+4ab-7b^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\left(a-b\right)\left(3a+7b\right)=0\end{cases}}\)
TH1: \(\hept{\begin{cases}2a+b\ge0\\a=b\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\sqrt{x+1}=x-2\end{cases}}\)
<=> \(\hept{\begin{cases}2\left(x-2\right)+\sqrt{x+1}\ge0\\x>2\\x+1=\left(x-2\right)^2\end{cases}}\)<=> \(x=\frac{5+\sqrt{5}}{2}\)
TH2: 3a+7b=0
Trường hợp 2 dài lắm nhưng cuối cùng kết quả vô nghiệm nhé!
P/s: mình không học đội tuyển toán nên mình cũng không biết cách này có được không nữa, mình chỉ làm theo cách cơ bản thôi! Bạn thông cảm nhé!
mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!
Giả sử con muỗi nặng m (gam), còn con voi nặng V (gam). Ta có
.
Cộng hai về với -2mV. Ta có
- 2mV + = - 2mV +
hay .
Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:
Do đó m - V = V - m
Từ đó ta có 2m = 2V, suy ra m = V. Vậy con muỗi nặng bằng con voi (!).
Hướng dẫn giải:
Phép chứng minh sai ở chỗ: sau khi lấy căn bậc hai mỗi vế của đẳng thức . Ta được kết quả │m - V│ = │V - m│ chứ không thể có m - V = V - m.
là sao v bạn