\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{12}\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2}{\sqrt{2}}\)

\(=\frac{\sqrt{5+2\cdot\sqrt{5}\cdot1+1}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}-2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2}{\sqrt{2}}\)

\(=\frac{\sqrt{5}+1-\left(\sqrt{5}-1\right)-2}{\sqrt{2}}\)(Vì \(\sqrt{5}>1>0\))

\(=\frac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=\frac{2-2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

\(=\sqrt{\frac{7}{2}-2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}-\sqrt{\frac{7}{2}+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}+\sqrt{7}\)

\(=\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}+\sqrt{7}\)

\(=\left|\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}\right|-\left|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right|+\sqrt{7}\)

\(=\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)+\sqrt{7}\)(Vì \(\sqrt{\frac{7}{2}}>\sqrt{\frac{1}{2}}>0\))

\(=\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}-\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}+\sqrt{7}\)

\(=-2\sqrt{\frac{1}{2}}+\sqrt{7}\)

\(=-\sqrt{2}+\sqrt{7}\)

18 tháng 7 2016

1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)

\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}-1+2-\sqrt{3}=1\)

\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)

\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)

\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)

18 tháng 7 2016

bạn khó bài nào mik lm cho chứ nhiều quá

19 tháng 10 2020

Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))

BT1:

Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=\sqrt{16-10-2\sqrt{5}}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

Từ đó thay vào: \(\left(A-B\right)^2\)

\(=A^2-2AB+B^2\)

\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)

\(=10-2\sqrt{5}\)

\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)

BT2:

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\cdot3=2\)

\(\Rightarrow B=\sqrt{2}\)

\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

19 tháng 10 2020

BT3:

đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)

\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)

\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)

\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)

\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)

\(C=\frac{4x^2+8x}{4x+8}=x\)

Vậy C = x

31 tháng 3 2017

a)

Lưu ý. Các căn số bậc hai là những số thực. Do đó khó làm tính với căn số bậc hai, ta có thể vận dụng mọi quy tắc và mọi tính chất của các phép toàn trên số thực.

b) Dùng phép đưa thừa số ra ngoài dấu căn để có những căn thức giống nhau là .

ĐS:

31 tháng 3 2017

a)

Lưu ý. Các căn số bậc hai là những số thực. Do đó khó làm tính với căn số bậc hai, ta có thể vận dụng mọi quy tắc và mọi tính chất của các phép toàn trên số thực.

b) Dùng phép đưa thừa số ra ngoài dấu căn để có những căn thức giống nhau là .

ĐS:



25 tháng 7 2018

a,\(x\ge0,x\ne49\)