Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đề bài phải thêm đk về x. VD: \(x\in (-\frac{\pi}{2};0)\)
Ta có:
\(\sqrt{4\sin ^4x+\sin ^2(2x)}=\sqrt{4\sin ^4x+(2\sin x\cos x)^2}\)
\(=\sqrt{4\sin ^2x(\sin ^2x+\cos ^2x)}=\sqrt{4\sin ^2x}=|2\sin x|=-2\sin x\) do \(x\in (\frac{-\pi}{2};0)\)
Mặt khác:
\(\cos \left(\frac{\pi}{4}-\frac{x}{2}\right)=\cos \frac{\pi}{4}\cos \frac{x}{2}+\sin \frac{\pi}{4}\sin \frac{x}{2}\)
\(=\frac{\sqrt{2}}{2}\cos \frac{x}{2}+\frac{\sqrt{2}}{2}\sin \frac{x}{2}\)
\(\Rightarrow 4\cos ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=2(\cos \frac{x}{2}+\sin \frac{x}{2})^2\)
\(=2(\cos ^2\frac{x}{2}+\sin ^2\frac{x}{2}+2\cos \frac{x}{2}\sin \frac{x}{2})\)
\(=2(1+\sin x)=2+2\sin x\)
Do đó: \(A=-2\sin x+2+2\sin x=2\) không phụ thuộc vào x
\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)
a) \(A=sin\left(\dfrac{\pi}{4}+x\right)-cos\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-\left(cos\dfrac{\pi}{4}.cosx+sin\dfrac{\pi}{4}.sinx\right)\)
\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\)
\(\Leftrightarrow A=\dfrac{\sqrt{2}}{2}.cosx+\dfrac{\sqrt{2}}{2}.sinx-\dfrac{\sqrt{2}}{2}.cosx-\dfrac{\sqrt{2}}{2}.sinx\)
\(\Leftrightarrow A=0\)
b) \(B=cos\left(\dfrac{\pi}{6}-x\right)-sin\left(\dfrac{\pi}{3}+x\right)\)
\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-\left(sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}.sinx\right)\)
\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-sin\dfrac{\pi}{3}.cosx-cos\dfrac{\pi}{3}.sinx\)
\(\Leftrightarrow B=\dfrac{\sqrt{3}}{2}.cosx+\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx-\dfrac{1}{2}.sinx\)
\(\Leftrightarrow B=0\)
c) \(C=sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)
\(\Leftrightarrow C=sin^2x+\left(cos\dfrac{\pi}{3}.cosx+sin\dfrac{\pi}{3}.sinx\right).\left(cos\dfrac{\pi}{3}.cosx-sin\dfrac{\pi}{3}.sinx\right)\)
\(\Leftrightarrow C=sin^2x+\left(\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right).\left(\dfrac{1}{2}.cosx-\dfrac{\sqrt{3}}{2}.sinx\right)\)
\(\Leftrightarrow C=sin^2x+\dfrac{1}{4}.cos^2x-\dfrac{3}{4}.sin^2x\)
\(\Leftrightarrow C=\dfrac{1}{4}.sin^2x+\dfrac{1}{4}.cos^2x\)
\(\Leftrightarrow C=\dfrac{1}{4}\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow C=\dfrac{1}{4}\)
d) \(D=\dfrac{1-cos2x+sin2x}{1+cos2x+sin2x}.cotx\)
\(\Leftrightarrow D=\dfrac{1-\left(1-2sin^2x\right)+2sinx.cosx}{1+2cos^2a-1+2sinx.cosx}.cotx\)
\(\Leftrightarrow D=\dfrac{2sin^2x+2sinx.cosx}{2cos^2x+2sinx.cosx}.cotx\)
\(\Leftrightarrow D=\dfrac{2sinx\left(sinx+cosx\right)}{2cosx\left(cosx+sinx\right)}.cotx\)
\(\Leftrightarrow D=\dfrac{sinx}{cosx}.cotx\)
\(\Leftrightarrow D=tanx.cotx\)
\(\Leftrightarrow D=1\)
Lời giải:
Đặt $\sin x=a; \cos x=b(a>b)$
Ta có: $a^3-b^3=\frac{\sqrt{2}}{2}\Rightarrow (a^3-b^3)^2=\frac{1}{2}$
$\Leftrightarrow a^6+b^6-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow (a^2+b^2)(a^4-a^2b^2+b^4)-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow a^4-a^2b^2+b^4-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow (a^2+b^2)^2-3a^2b^2-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow 3a^2b^2+2a^3b^3=\frac{1}{2}$
Đặt $ab=t$ thì $6t^2+4t^3-1=0$
$\Leftrightarrow 2t^2(2t+1)+(2t-1)(2t+1)=0$
$\Leftrightarrow (2t+1)(2t^2+2t-1)=0$
$\Rightarrow t=\frac{-1}{2}; t=\frac{-1\pm \sqrt{3}}{2}$
Nếu $t=ab=\frac{-1}{2}$:
$1=a^2+b^2=(a+b)^2-2ab\Rightarrow (a+b)^2=2ab+1=0\Rightarrow a=-b$
$\Rightarrow \tan x=\frac{a}{b}=-1$
$\Rightarrow \tan (x+\frac{\pi}{4})=\frac{\tan x+1}{1-\tan x}=0$
Nếu $t=ab=\frac{-1-\sqrt{3}}{2}\Rightarrow (a+b)^2=a^2+b^2+2ab=1+(-1-\sqrt{3})< 0$ (vô lý- loại)
Nếu $t=ab=\frac{-1+\sqrt{3}}{2}$
$a^3-b^3=\frac{\sqrt{2}}{2}\Leftrightarrow (a-b)(a^2+b^2+ab)=\frac{\sqrt{2}}{2}$
$\Leftrightarrow (a-b)(1+ab)=\frac{\sqrt{2}}{2}$
$\Rightarrow a-b=\frac{\sqrt{2}}{2}:(1+ab)=\frac{\sqrt{6}-\sqrt{2}}{2}$
Áp dụng định lý Vi-et đảo, $a,-b$ là nghiệm của PT:
$X^2-\frac{\sqrt{6}-\sqrt{2}}{2}X+\frac{1-\sqrt{3}}{2}=0$
Đến đây giải ra tìm $a,-b\Rightarrow a,b$
$\Rightarrow \tan x=\frac{a}{b}$. Từ đó thế vào tìm $\tan (x+\frac{\pi}{4})$
Áp dụng công thức biến tích thành tổng:
\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)
\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)
\(=cos^2a-sin^2b\)
\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)
\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)
\(=\dfrac{1}{2}cos^2a\)
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
\(M=cos^2\left(\frac{\pi}{4}+a\right)-cos^2\left(\frac{\pi}{4}-a\right)\)
\(=\frac{1}{2}\left(1+cos\left(\frac{\pi}{2}+2a\right)-1-cos\left(\frac{\pi}{2}-2a\right)\right)\)
\(=\frac{1}{2}cos\left(\frac{\pi}{2}+2a\right)-\frac{1}{2}cos\left(\frac{\pi}{2}-2a\right)\)
\(=-\frac{1}{2}sin2a-\frac{1}{2}sin2a=-sin2a\)
\(1+\cot^2a=\dfrac{1}{\sin^2a}=1+\dfrac{1}{4}=\dfrac{5}{4}\)
\(\Leftrightarrow\sin^2a=\dfrac{4}{5}\)
hay \(\sin a=-\dfrac{2\sqrt{5}}{5}\left(\Pi< a< \dfrac{3\Pi}{2}\right)\)
=>\(\cos a=-\dfrac{\sqrt{5}}{5}\)
\(\sin^2a\cdot\cos a=\dfrac{4}{5}\cdot\dfrac{-\sqrt{5}}{5}=\dfrac{-4\sqrt{5}}{25}\)
\(A=cos^2x+\dfrac{1+cos\left(\dfrac{2\pi}{3}+2x\right)}{2}+\dfrac{1+cos\left(\dfrac{2\pi}{3}-2x\right)}{2}\\ =cos^2x+1+\dfrac{cos\left(\dfrac{2\pi}{3}+2x\right)+cos\left(\dfrac{2\pi}{3}-2x\right)}{2}\\ =cos^2x+1+cos\left(\dfrac{2\pi}{3}\right).cos2x\\ =cos^2x+1-\dfrac{1}{2}.cos2x=\dfrac{1+cos2x}{2}+1-\dfrac{cos2x}{2}=\dfrac{3}{2}.\)