\(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{a.b.c+b.c+b}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

Đề bài vẫn chưa đúng nhé, đúng ra phải là \(M=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ac+c}\)

Ta có : \(M=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ac+c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2b^2c+a^2bc+abc}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)

23 tháng 9 2016

Vì a.b.c = 1

Ta có :

\(\frac{1}{ab+a+1}=\frac{c}{abc+ac+c}=\frac{c}{1+ac+c}\)

\(\frac{1}{bc+b+1}=\frac{ca}{bc.ca+abc+ca}=\frac{ca}{c+ca+1}\)

\(\frac{1}{abc+bc+b}=\frac{ac}{abc.ac+bc.ac+b.ac}=\frac{ac}{ac+c+1}\)

\(\Rightarrow M=\frac{c}{1+ac+c}+\frac{ca}{c+ca+1}+\frac{ac}{ac+c+1}\)

\(\Rightarrow M=\frac{c+2ac}{1+ac+c}\)

\(\Rightarrow M=\frac{bc+2}{b+1+bc}\)

\(\Rightarrow M=\frac{bc++1+abc}{b+1+bc}\)

-_-

Năm ngoái a lm ko ra thế này đâu

23 tháng 9 2016

Đề sai toàn tập, dấu "=" rồi còn tính gì nữa ????

23 tháng 9 2016

mk cũng nghĩ là dấu +

26 tháng 1 2017

\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)

\(=\frac{abc}{abc+a\times abc+ab}+\frac{abc}{abc+b+bc}+\frac{1}{1+c+ac}\)

\(=\frac{abc}{ab\left(c+ac+1\right)}+\frac{abc}{b\left(ac+1+c\right)}+\frac{1}{1+c+ac}\)

\(=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)

\(=\frac{c+ac+1}{c+ac+1}\)

= 1

20 tháng 10 2016

Đề bài sai nhé, chỗ \(\frac{1}{b.c+b+1}\) phải là \(\frac{b}{b.c+b+1}\) ms đúng

Ta có:

\(\frac{1}{a.b+a+1}+\frac{b}{b.c+b+1}+\frac{1}{a.b.c+b.c+b}=\frac{a.b.c}{a.b+a+a.b.c}+\frac{b}{b.c+b+1}+\frac{1}{1+b.c+b}\)

\(=\frac{a.b.c}{a.\left(b+1+b.c\right)}+\frac{b}{1+b.c+b}+\frac{1}{1+b.c+b}\)

\(=\frac{b.c}{b+1+b.c}+\frac{b}{1+b.c+b}+\frac{1}{1+b.c+b}=\frac{b.c+b+1}{1+b.c+b}=1\left(đpcm\right)\)

21 tháng 10 2016

Ko saj dau pan?????lolang

 

13 tháng 1 2017

Ta có:

\(\frac{1}{1+a+a.b}+\frac{1}{1+b+b.c}+\frac{1}{1+c+a.c}\)

\(=\frac{1}{1+a+a.b}+\frac{a}{a+a.b+a.b.c}+\frac{a.b}{a.b+a.b.c+a.c.a.b}\)

\(=\frac{1}{1+a+a.b}+\frac{a}{a+a.b+a}+\frac{a.b}{a.b+1+a}\)

\(=\frac{1+a+a.b}{1+a+a.b}=1\)

13 tháng 7 2018

bạn dùng TC dãy tỉ số bằng nhau đi

cộng vào là ra kết quả ngay mà

24 tháng 9 2016

a)

\(\frac{x-1}{2017}+\frac{x-2}{2016}=\frac{x-3}{2015}+\frac{x-4}{2014}\)

\(\Leftrightarrow\frac{x-1}{2017}+\frac{x-2}{2016}-\frac{x-3}{2015}-\frac{x-4}{2014}=0\)

\(\Leftrightarrow\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)-\left(\frac{x-3}{2015}-1\right)-\left(\frac{x-4}{2014}-1\right)=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)=0\)

\(\Leftrightarrow x=2018\)

24 tháng 9 2016

Toán lớp 6Bài của Nguyễn Phương Hà ấy.

25 tháng 6 2019

a,Theo gt, ta có :\(a.\left(a-b\right)-b.\left(a-b\right)=64\Rightarrow\left(a-b\right)^2=64\Rightarrow\)\(\Rightarrow a-b=8\left(1\right)\)

Lại có:\(a.\left(a-b\right)+b.\left(a-b\right)=-16\Rightarrow\left(a+b\right).\left(a-b\right)=-16.\left(2\right)\)\(Thay:a-b=8\)vào \(\left(2\right)\) ta được:

\(\left(a+b\right).8=-16\Rightarrow a+b=-2\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)

b, Theo gt, ta có :\(a.b.b.c.c.a=\frac{1}{16}\Rightarrow\left(a.b.c\right)^2=\frac{1}{16}\Rightarrow a.b.c=\frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-\frac{2}{3}\\c=-\frac{3}{4}\end{cases}}\)