Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-y-2\right)\left(x+y\right)\)
a) xy + y2 - x - y
= ( xy – x ) + ( y^2 – y )
= x (y – 1) + y (y – 1)
= (y – 1) (x + y)
b) 25 – x^2 + 4xy - 4y^2
= 5^2 – (x^2 – 4xy + 4y^2)
= 5^2 – (x – 2y)^2
= (5 – x + 2y)(5 + x – 2y)
Tik mình với
a) 25 - x2 + 4xy - 4y2 = 25 - (x2 - 4xy + 4y2) = 52 - (x - 2y)2 = (5 + x - 2y)(5 - x +2y) = (x - 2y + 5)(2y - x + 5)
b) 3a2c2 + bd + 3abc + acd = (3a2c2 + 3abc) + (bd + acd) = 3ac(ac + b) + d (ac + b) = (ac + b)(3ac + d)
c) x3 - 2x2 - x + 2 = x2(x - 2) - (x - 2) = (x - 2)(x2 - 1) = (x - 2)(x - 1)(x + 1)
d) a4 + 5a3 + 15a - 9 = (a4 + 3a2) + (5a3 + 15a) - (3a2 + 9) = a2(a2 + 3) + 5a(a2 + 3) - 3(a2 + 3) = (a2 + 3)(a2 + 5a - 3)
a,81-(x^2-4xy+4y^2)=81-(x-2y)^2=(9-(x-2y))(9+(x-2y))=(9-x+2y)(9+x-2y)
b,x^3+y^3+z^3-3xyz=(x^3+3(x^2)y+3x(y^2)+y^3)+z^3-3xyz-3xy(x+y)
=((x+y)^3+3((x+y)^2)z+3(x+y)z^2+z^3)-(3xyz-3xy(x+y))-3(x+y)z(x+y+z)
=(x+y+z)^3-3(x+y)z(x+y+z)-3xy(x+y+z)=(x+y+z)((x+y+z)^2-3(x+y)z-3xy)
=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3xz)=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
phân tích đa thức sau thành nhân tử:
a) x5 + x + 1
b) x2 - 4xy + 4y2 - 2x + 4y - 35
c) x4 - 5x2y2 + 4y2
a. 2x-1-x2= -(x2-2x+1)=-(x-1)2
b. 8x3+y6=(2x)3+(y2)3
=(2x+y2)(4x2-2xy2+y4)
c. x2-16+4xy+4y2=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
a) 2xy2 - 6x2y + 4xy
= 2xy.(y - 3x + 2)
b) x2 - y2 - 5x + 5y
= (x+y).(x-y) - 5.(x-y)
= (x-y).(x+y-5)
c) x2 - 4y2 - 1 + 4y
= x2 - (4y2 - 4y + 1)
= x2 - [ (2y)2 - 2.2.y.1 + 12 ]
= x2 - (2y-1)2
= (x+2y-1).(x-2y+1)
B=25-x2+4xy-4y2=52-(x-2y)2=(5-x+2y)(5+x-2y)