\(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

- CM : AM < (AB+BC):2

Tren tia AM lay D / M la trung diem AD

cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD

ta co : AD<AC+CD ( bdt trong tam giac ACD)

ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)

nen 2AM< AC+AB

--> AM < ( AC+AB):2

- cm ( AB+AC-BC):2 < AM

ta co : AB < AM+BM ( bdt trong tam giac ABM )

            AC< AM+MC ( bdt trong tam giac AMC )

==> AB+AC < AM+BM+AM+MC

----> A

19 tháng 11 2018

a)ta có:M là trung điểm AB(gt)

N là trung điểm AC(gt)

nên MN là đường trung bình của tam giác ABC

suy ra MN// với cạnh đáy

suy ra MN//BC

b)ta có MN là đường trung bình của tam giác ABC(cmt)

nên MN=1/2 cạnh đáy(tính chất đường trung bình )

suy ra MN=1/2 BC=BC/2

19 tháng 11 2018

a)Ta có M là TĐ của AB(gt)

        N là TĐ của AC(gt)

=> MN là đường TB của tam giác ABC

=>MN // BC (Định lý đường TB trong tam giác)

b) Ta có MN là đường TB của tam giác ABC(cm a)

=>MN=BC/2 (Định lý đường TB trong tam giác)

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
14 tháng 3 2017

trong sbt toán 7 tập 2 bạn tham khảo được đó

24 tháng 3 2020

a) (Nếu cj biết vẽ hình rồi thì thôi nha chị, còn nếu chị chưa vẽ được hình thì chị có thể nhắn tin với em ạ )

Ta có : tam giác ABE và tam giác ADC có : 

AB = AD

AC=AE

góc DAC  = góc BAE  ( cũng = góc BAC t60 độ ) 

=> tam giác ABE  = tam giác ADC ( c . g . c ) 

=> góc AEB  = góc ACD ( 2 góc tương ứng) ; BE = CD

Gọi F là tia đối tia BI sao cho DI=IF

=> tam giác DIF đều do góc DIB = 60 độ

Xét tam giác DBF  và tam giác DAI có : 

DF = DI , DB = DA  , góc FDB = góc IDA = 60 độ - góc BDI 

Vậy ta có : ID = IF = IB + FB = IB + IA ( đpcm )

b) Ta có : AM2 = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)

Áp dụng định lí cosin trong tam giác ABM ta có : 

AM2 =BA2 + BM2 -2.BA . BM .cos B

       = AB2 + BM2 -2.AB . BM . \(\frac{AB^2+BC^2-AC^2}{2.AB.BC}\)

        = AB2 + \(\frac{BC^2}{4}-2.BM.\frac{AB^2+BC^2-AC^2}{2.2.BM}\)

       = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)

<=> AB2 + AC2 =2.AM2 + \(\frac{BC^2}{2}\)