\(\left(\dfrac{1}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{1}{\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

☘ TOÁN 9 ☘ Câu 1: Cho a,b,c là các số ko âm và a+b+c=1 CM: \(\sqrt{a+1}\) +\(\sqrt{b+1}\) +\(\sqrt{c+1}\) <3,5 Câu 2: Cho biểu thức: (x+\(\sqrt{x^2+2006}\))(y+\(\sqrt{y^2+2006}\))=2006. Tính: S= x+y Câu 3: Cho bt: P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\) với x>0; x\(\ne\)4 a) Rút gọn P b) Tìm x để P>3 Câu 4: Cho bt: A= \(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x+1}}\) a) Đặt...
Đọc tiếp

TOÁN 9

Câu 1: Cho a,b,c là các số ko âm và a+b+c=1

CM: \(\sqrt{a+1}\) +\(\sqrt{b+1}\) +\(\sqrt{c+1}\) <3,5

Câu 2: Cho biểu thức: (x+\(\sqrt{x^2+2006}\))(y+\(\sqrt{y^2+2006}\))=2006. Tính: S= x+y

Câu 3: Cho bt: P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\) với x>0; x\(\ne\)4

a) Rút gọn P

b) Tìm x để P>3

Câu 4: Cho bt: A= \(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x+1}}\)

a) Đặt điều kiện để bt A có nghĩa

b) Rút gọn bt A

c) Với giá trị nào của thì A<1

Câu 5: Cho bt : M= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

a) Tìm ĐKXĐ của M

b) Rút gọn bt

c) Tìm giá trị của a để M=-4

Câu 6: Rút gọn bt:

a) 4x+\(\sqrt{\left(x-12\right)^2}\) ( x\(\ge\)2 )

b) x+2y-\(\sqrt{\left(x^2-4xy+4y^2\right)}\) ( x\(\ge\)2y)

☛❤ giúp mk vs nha ❤✔☺☺

1
12 tháng 1 2018

câu 5

Hỏi đáp Toán

13 tháng 1 2018

thanks ☺☺

26 tháng 11 2018

hay mk sẽ giải nhưng co kq

21 tháng 11 2022

Bài 3:

\(C=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1+2}{a-1}\)

\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{a-1}{\sqrt{a}+3}\)

\(=\dfrac{\left(a-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

16 tháng 7 2018

a, \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{15+2\cdot3\cdot\sqrt{6}}-\sqrt{10+2\cdot2\cdot\sqrt{6}}=\sqrt{9+2\cdot3\cdot\sqrt{6}+6}-\sqrt{6+2\cdot\sqrt{6}\cdot2+4}=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}+2\right)^2}=3+\sqrt{6}-\sqrt{6}-2=3-2=1\left(đpcm\right)\)

b, đề không rõ ràng

30 tháng 4 2018

Bài 1:

a)Với x > 0;x ≠ 4 ta có:

\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)

\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4}{x-4}\)

c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)

30 tháng 4 2018

Bài 2:

a)Với a > 0;a ≠ 1;a ≠ 2 ta có

\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)

b)Ta có:

\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)

P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)

\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)

\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)

\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)

\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)

\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)

\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)

\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)

Vậy a = 6

27 tháng 6 2018

các bạn ơi giúp mình với

23 tháng 10 2018

bài 1

\(\dfrac{x+y-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

=\(\sqrt{x}-\sqrt{y}-\sqrt{x}=-\sqrt{y}\)

23 tháng 10 2018

bài 2

\(\sqrt{\left(1-2\right)^2}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{1}{2}}\)

=\(\left|1-2\right|+\dfrac{3}{\sqrt{2}}-\dfrac{\sqrt{1}}{\sqrt{2}}\)

= 1+\(\dfrac{3-1}{\sqrt{2}}=1+\dfrac{2}{\sqrt{2}}=1+\sqrt{2}\)

24 tháng 6 2018

Câu 1:

\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)

24 tháng 6 2018

Câu 2:

\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)

\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

b) Áp dụng bất đảng thức ở câu a:

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)

Từ \(\left(3\right)\)\(\left(4\right)\Rightarrow18< S< 20\)