Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\left(\sqrt{x}+1\right)}{x-5\sqrt{x}+6}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-4+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{2}{\sqrt{x}-3}\)
b) Ta có: P < -1 <=> \(\frac{2}{\sqrt{x}-3}< -1\) <=> \(\frac{2}{\sqrt{x}-3}+1< 0\)
<=> \(\frac{2+\sqrt{x}-3}{\sqrt{x}-3}< 0\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}< 0\)
TH1: \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-3>0\end{cases}}\) <=> \(\hept{\begin{cases}x< 1\\x>9\end{cases}}\)(loại)
TH2: \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-3< 0\end{cases}}\) <=> \(\hept{\begin{cases}x>1\\x< 9\end{cases}}\)
Kết hợp vs đk => S = {x|1 < x < 9 và x \(\ne\)4}
c) Để P nguyên <=> 2 \(⋮\)\(\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Lập bảng: tự làm
@Edogawa Conan phân số thứ 2 bạn bị sai rồi \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=x+2\sqrt{x}-3\)
trước phân số là dấu "-" phải đổi dấu
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{1}{\sqrt{x}-2}\)
vậy \(A=\frac{1}{\sqrt{x}-2}\)
A có nghĩa khi \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
vậy \(x=4\) thì A có nghĩa
b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)
theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)
vậy \(4< x< \frac{25}{4}\) thì \(A>2\)
a) đkxđ : \(x\ge0;x\ne2;x\ne1\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{-2x+\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(-2\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
b) P>=2
\(\frac{-2x+\sqrt{x}+3-2\left(x-3\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
\(\frac{-2x+\sqrt{x}+3-2x+6\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
\(\frac{-4x+7\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
\(\frac{-4\left(\sqrt{x}-\frac{7+\sqrt{33}}{8}\right)\left(\sqrt{x}-\frac{7-\sqrt{33}}{8}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
a) Ta có :\(x-3\sqrt{x}+2=\left(\sqrt{x}\right)^2-\sqrt{x}-2\sqrt{x}+2\)\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
P xác định \(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\\\sqrt{x}-1\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne2\\\sqrt{x}\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne1\end{cases}}}\)
Vậy với \(x\ge0;x\ne4;x\ne1\)thì P xác định
b) Cho mình hỏi, câu b là yêu cầu tìm x để \(P\ge2\)hay chứng minh \(P\ge2\)
c) \(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{x-\sqrt{x}-3\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\sqrt{x}-2x+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(3-2\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
Bạn thử xem lại đề nhé. Nếu rút gọn thì kết quả như trên, không rút gọn đc nữa. Chỉ khi nào trên tử là số mới tìm P nguyên đc
Mình sẽ suy nghĩ thêm