Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A\left(x\right)=x^2+2x+2015=x^2+2x+1+2014\)
\(=\left(x+1\right)^2+2014>0\forall x\)do \(\left(x+1\right)^2\ge0\forall x;2014>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
A(x) \(=x^4+2x^2+1\)
\(=x^4+x^2+x^2+1\)
\(=x^2.\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left(x^2+1\right)\)
\(=\left(x^2+1\right)^2\)
Mà \(x^2+1\ge1\) => \(\left(x^2+1\right)^2\ge1^2\)
Vậy đa thức vô nghiệm.
A(x) = x^4 + 2x^2 + 1
vì \(x^4\ge0\) với mọi x
\(2x^2\ge0\) với mọi x
\(\Rightarrow x^4+2x^2+1\ge1>0\)
=> đa thức A(x) không có nghiệm
Ta có:
3\(x^6\)\(\ge\)0 với mọi x
2\(x^4\)\(\ge\)0 với mọi x
\(x^2\)\(\ge\)0 với mọi x
=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x
Vậy f(x) không co nghiệm
\(A\left(x\right)=x^2-4x+7\)
\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)
Vì \(\left(x-2\right)^2+3\ge3>0\) với mọi x E R
=>(1) không xảy ra
=>A(x) vô nghiệm (đpcm)
\(p\left(x\right)=x^4+x^3+x+1\)
\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)
Vậy............................
Cho đa thức: \(x^2+2x+2=0\)
\(=x^2+x+x+2=0\)
\(=x\left(x+1\right)+1\left(x+1\right)-1+2=0\)
\(=x\left(x+1\right)+1\left(x+1\right)+1=0\)
\(=\left(x+1\right).\left(x+1\right)=-1\)
\(\left(x+1\right)^2=-1\)(Vô lí)
\(\Rightarrow x^2+2x+2\) vô nghiệm
\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\) > 0 với mọi x
Vậy đa thức f(x) không có nghiệm
Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow x^2+x+x+1+2=0\)
\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)
\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)
\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)
Lời giải:
Ta có: \(A(x)=x^2+2x+2015=(x^2+2x+1)+2014\)
\(=(x+1)^2+2014\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A(x)\geq 2014\)
\(\Rightarrow A(x)\neq 0\)
Do đó đa thức $A(x)$ không có nghiệm (đpcm)