K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2=3^2\cdot3^3\cdot\left(\frac{1}{3}\right)^43^2=3^7\cdot\frac{1}{3^4}=3^3\)

b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)=2^2\cdot2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)

c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2=3^2\cdot2^5\cdot\frac{2^2}{3^2}=2^7\)

d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2=\frac{1}{3^2}\cdot\frac{1}{3}\cdot3^4=\frac{1}{3^3}\cdot3^4=3\)

13 tháng 7 2016

a)9.33.\(\frac{1}{81}\).32

   =32.33.34.\(\frac{1}{3^4}\).32

    =311.\(\frac{1}{3^4}\)

    =37

b)4.25:(\(2^3.\frac{1}{16}\))

  =22.25:(\(2^3.\frac{1}{2^4}\))

  =27:\(\frac{2^3}{2^4}\)

  =27.\(\frac{2^4}{2^3}\)

   =\(\frac{2^{11}}{2^3}\)

   =28

c)32.25.\(\left(\frac{2}{3}\right)^2\)

   =32.25.\(\frac{2^2}{3^2}\)

   =\(\frac{3^2.2^5.2^2}{3^2}\)

   =27

d)\(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2\)

    =\(\frac{1^2}{3^2}.\frac{1}{3}.\left(3^2\right)^2\)

    =\(\frac{1^2}{3^2}.\frac{1}{3}.3^4\)

    =\(\frac{1^2}{3^2}.\frac{3^4}{3}\)

    =\(\frac{1^2}{3^2}.3^3\)

   =3

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0

a: \(=3^2\cdot3^3\cdot3^{-4}\cdot3^2=3^{2+3-4+2}=3^3\)

b: \(=2^2\cdot2^5:\left(2^3\cdot\dfrac{1}{2^4}\right)=2^7:\dfrac{1}{2}=2^8\)

c: \(=9\cdot32\cdot\dfrac{4}{9}=128=2^7\)

d: \(=\dfrac{1}{27}\cdot3^4=3^1\)

a: \(=3^2\cdot3^5:3^4=3^{2+5-4}=3^3\)

b: \(=2^3\cdot2^4:\left(\dfrac{8}{16}\right)=\dfrac{2^7}{2}=2^6\)

c: \(=3^7\cdot3^3=3^{10}\)

d: \(=5^3\cdot5^2\cdot\dfrac{1}{5^4}=5^1\)

22 tháng 9 2016

oho nhiều quá trời, lm chắc mỏi tay luôn

23 tháng 9 2016

\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\) 

              \(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)

             \(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .

\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\) 

 \(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)            

              \(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)

              \(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)

\(2^x=2\Rightarrow x=1\)

\(3^x=3^4\Rightarrow x=4\)

\(7^x=7^7\Rightarrow x=7\)

\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)

\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)

\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)

\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)

\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)

\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)

\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)

\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)

\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)

\(\left(-2\right)^{4x+2}=64\)

\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)

\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)

\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)

\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)

                                      \(2x-5x=-4+1\) 

                                           \(-3x=-3\Rightarrow x=1\)

\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)

 \(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)

\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)

\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)

\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)

 \(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)

\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)

\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).

hehe.heheoho đánh tới què tay, hoa mắt lun r nekkk!!hum

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

3 tháng 1 2017

=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)

=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)