Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
Bài 2 :
a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)
\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=x^3+2x^2-x-2-\left(x^3-4^3\right)\)
\(=x^3+2x^2-x-2-x^3+64\)
\(=2x^2-x+62\)
\(2x\left(3x-2\right)^2\)
\(=2x\left(9x^2-12x+4\right)\)
\(=18x^3-24x^2+8x\)
\(\left(x-3\right)\left(x^2-3x+9\right)\)
\(=x^3-3x^2+9x-3x^2+9x-27\)
\(=x^3-3x^2+18x-27\)
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=\left(x^2-1^2\right)\left(x+2\right)-x^3-4^3\)
\(=\left(x+1\right)\left(x-1\right)\left(x+2\right)-x^3-64\)