\(f\left(x\right)=x\left(1-2x\right)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm 

10 tháng 9 2018

bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ

10 tháng 9 2018

dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm

\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)

                                   \(=4y^2+12xy+9y^2\)

\(2a.x^2-6x+9\)

\(=x^2-2.x.3+3^2\)

\(=\left(x-3\right)^2\)

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

8 tháng 6 2018

đề dài v~

1.

a) \(f\left(x\right)=5x^2-2x+1\)

\(5f\left(x\right)=25x^2-10x+5\)

\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)

\(5f\left(x\right)=\left(5x-1\right)^2+4\)

Mà  \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow5f\left(x\right)\ge4\)

\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)

Dấu " = " xảy ra khi :

\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy ....

b)  \(P\left(x\right)=3x^2+x+7\)

\(3P\left(x\right)=9x^2+3x+21\)

\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)

\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)

Mà  \(\left(3x+\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)

\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)

Dấu "=" xảy ra khi :

\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy ...

c)  \(Q\left(x\right)=5x^2-3x-3\)

\(5Q\left(x\right)=25x^2-15x-15\)

\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)

\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)

Mà  \(\left(5x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)

\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)

Dấu "=" xảy ra khi :

\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)

Vậy ...

8 tháng 6 2018

2.

a)  \(f\left(x\right)=-3x^2+x-2\)

\(-3f\left(x\right)=9x^2-3x+6\)

\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)

\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)

Mà  \(\left(3x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)

\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)

Dấu "=" xảy ra khi :

\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)

Vậy ...

b)  \(P\left(x\right)=-x^2-7x+1\)

\(-P\left(x\right)=x^2+7x-1\)

\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)

\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x+\frac{7}{2}\right)^2\ge0\)

\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)

\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)

Vậy ...

c)  \(Q\left(x\right)=-2x^2+x-8\)

\(-2Q\left(x\right)=4x^2-2x+16\)

\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)

\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)

Mà :  \(\left(2x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)

\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)

Dấu "=" xảy ra khi :

\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)

Vậy ...

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)