Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
k) \(x^3-x+3x^2+3xt^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
h) \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)
= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)
= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)
= \(\left(x-y-5\right)\left(9x+y-5\right)\)
b) \(x^3+3x^2+3x+1-27z^3\)
= \(\left(x+1\right)^3-27z^3\)
= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)
c) \(x^2-2xy+y^2-xz+yz\)
= \(\left(x-y\right)^2-z\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y-z\right)\)
d) \(a^3x-ab+b-x\)
= \(x\left(a^3-1\right)-b\left(a-1\right)\)
= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)
f) \(x^2+2x-4y^2-4y\)
= \(x^2+2x+1-\left(4y^2+4y+1\right)\)
= \(\left(x+1\right)^2-\left(2y+1\right)^2\)
= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)
= \(\left(x-2y\right)\left(x+2y+2\right)\)
g) \(xy-4+2x-2y\)
= \(y\left(x-2\right)-2\left(x-2\right)\)
= \(\left(x-2\right)\left(y-2\right)\)
a: \(=\left(5x-5\right)^2-\left(4x-4y\right)^2\)
\(=\left(5x-5-4x+4y\right)\cdot\left(5x-5+4x-4y\right)\)
\(=\left(x+4y-5\right)\left(9x-4y-5\right)\)
b: \(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
c: \(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
d: \(=x\left(a^3-1\right)-b\left(a-1\right)\)
\(=x\left(a-1\right)\cdot\left(a^2+a+1\right)-b\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2x+ax+1-b\right)\)
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(\Leftrightarrow\left(x+2\right)3x\)
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)