Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left(2x^4-5x^2y^2+3xy^3\right)\left(5x^3+x^2y-y^3\right)\)
\(=10x^7-25x^5y^2+15x^4y^3+2x^6y-5x^4y^3+5x^2y^5+3xy^6\)
2, a, \(4-2x+5x^2-4x^2\&5x-3+x^2\)
Sắp xếp: \(4-2x+5x^2-4x^2=5x^2-4x^2-2x+4=x^2-2x+4\)
\(5x-3+x^2=x^2+5x-3\)
- \(\left(x^2-2x+4\right)\left(x^2+5x-3\right)=x^4+3x^3-9x^2-14x-12\)
b, Làm tương tự câu a
1 ) \(\left(2x^4-5x^2y^2+3xy^3\right)\left(5x^3+x^2y-y^3\right)\)
\(=2x^4\left(5x^3+x^2y-y^3\right)-5x^2y^2\left(5x^3+x^2y-y^3\right)+3xy^3\left(5x^3+x^2y-y^3\right)\)\(=10x^7+2x^6y-2x^4y-25x^5y^2-5x^4y^3+5x^2y^5+15x^4y^3+3x^3y^4-3xy^6\)2 ) a ) \(4-2x+5x^2-4x^2=x^2-2x+4\)
\(5x-3+x^2=x^2+5x-3\)
\(\left(x^2-2x+4\right)\left(x^2+5x-3\right)\)
\(=x^4-2x^3+4x^2+5x^3-10x^2+20x-3x^2+6x-12\)
\(=x^4+3x^3-9x^2+26x-12\)
b ) \(10-x^4+3x-4x^2=-x^4-4x^2+3x+10\)
\(2x+x^3-1=x^3+2x-1\)
\(\left(-x^4-4x^2+3x+10\right)\left(x^3+2x-1\right)\)
\(=-x^4\left(x^3+2x-1\right)-4x^2\left(x^3+2x-1\right)+3x\left(x^3+2x-1\right)+10\left(x^3+2x-1\right)\)\(=-x^7-2x^5+x^4-4x^5-8x^3+4x^2+3x^4+6x^2-3x+10x^3+20x-10\)\(=-x^7-\left(2x^5+4x^5\right)+\left(3x^4+x^4\right)+\left(10x^3-8x^3\right)+\left(4x^2+6x^2\right)+\left(20x-3x\right)-10\)\(=-x^7-6x^5+4x^4+2x^3+10x^2+17x-10\)
Bài 1 :
b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
Bài 2 :
a, Để \(x^3+3x^2+3x-2⋮x+1\)
<=> \(x^3+1+3x^2+3x-3⋮x+1\)
<=> \(\left(x+1\right)^3-3⋮x+1\)
Ta thấy : \(\left(x+1\right)^3⋮x+1\)
<=> \(-3⋮x+1\)
<=> \(x+1\inƯ_{\left(3\right)}\)
<=> \(x+1=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{0,-2,2,-4\right\}\)
Vậy ...
b, Để \(2x^2+x-7⋮x-2\)
<=> \(2x^2-8x+8+9x-15⋮x-2\)
<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)
Ta thấy : \(2\left(x-2\right)^2⋮x-2\)
<=> \(9x-15⋮x-2\)
<=> \(9x-18+3⋮x-2\)
Ta thấy : \(8\left(x-2\right)⋮x-2\)
<=> \(3⋮x-2\)
<=> \(x-2\inƯ_{\left(3\right)}\)
<=> \(x-2=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{3,1,5,-1\right\}\)
Vậy ...
1.
a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)
b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)
2.
a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)
b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ
3.
\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)
4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
\(A\ge\frac{7}{4}\)
Vậy GTNN của A là 7/4
a) \(x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(A=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Với x=2 thì: \(A=\left(2-1\right)^3=1\)
Với x=-2 thì \(A=\left(-2-1\right)^3=-3^3=-27\)
b) \(x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
\(B=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Với x=1 thì \(A=\left(1-1\right)^3=0\)
Với x=-6 thì \(A=\left(-6-1\right)^3=-7^3=-343\)
\(\text{⇔(x−1)(x+6)=0}\)chỗ đó s ra thế bn ?? mìh chưa hiểu
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a/ (3x+7)(2x+3)−(3x−5)(2x+11)
=6x2+9x+14x+21−6x2−33x+10x+55
=76
Vậy biểu thức sau ko phụ thuộc vào biến (đfcm)
b/ (3x2−2x+1)(x2+2x+3)−4x(x2+1)−3x2(x2+2)
=3x4+6x3+9x2−2x3−4x2−6x+x2+2x+3−4x3−4x−3x4−6x2
=3
a/ \(\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
\(=6x^2+9x+14x+21-6x^2-33x+10x+55\)
\(=76\)
Vậy....
b/ \(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2+1\right)-3x^2\left(x^2+2\right)\)
\(=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3-4x-3x^4-6x^2\)
\(=3\)
Vậy...
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)
`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`
`= 3x^5 - 4x^2 - 7x + 2`
`b)`
`A(x)+B(x)`
`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)
`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`
`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`
`= -4x - 5`
`b)`
`A(x) - B(x)`
`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`
`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`
`= 6x^5 - 8x^2 - 10x + 9`
`c)`
Thay `x=-1` vào đa thức `A(x)`
` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`
`= 3*(-1) - 4*1 + 7 + 2`
`= -3 - 4 + 7 + 2`
`= -7+7 + 2`
`= 2`
Bạn xem lại đề ;-;.
`2,`
`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)
`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`
`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`
`= 6x^2 - x - 2 - (6x^2 - x - 1)`
`= 6x^2 - x - 2 - 6x^2 + x + 1`
`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`
`= -1`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
2:
M=6x^2+3x-4x-2-6x^2+3x-2x+1
=-1
1;
a: A(x)=3x^5-4x^2-7x+2
b: B(x)=-3x^5+4x^2+3x-7
B(x)+A(x)
=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7
=-4x-5
A(x)-B(x)
=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7
=-6x^5-8x^2-10x+9