Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi diện tích ba cánh đồng là a,b,c.
\(\Rightarrow\begin{cases}\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\\c-a=200\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{200}{4}=50\)
- \(\frac{a}{3}=50\Rightarrow a=50.3=150\)
- \(\frac{b}{5}=50\Rightarrow b=50.5=250\)
- \(\frac{c}{7}=50\Rightarrow x=50.7=350\)
Vậy: diện tích ba cánh đồng lần lượt là \(150m^2\), \(250m^2\) và \(350m^2\)
Giải:
Gọi diện tích 3 cánh đồng lần lượt là a, b, c ( a,b,c > 0 )
Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và c - a = 200
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{200}{4}=50\)
+) \(\frac{a}{3}=50\Rightarrow a=150\)
+) \(\frac{b}{5}=50\Rightarrow b=250\)
+) \(\frac{c}{7}=50\Rightarrow c=350\)
Vậy diện tích cánh đồng thứ nhất là 150ha
diện tích cánh đồng thứ hai là 250ha
diện tích cánh đồng thứ ba là 350ha
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=50\)
Do đó: a=150; b=250; c=350
Gọi số máy cày của đội thứ nhất, đội thứ hai và đội thứ ba lần lượt là a(máy), b(máy) và c(máy)(Điều kiện: a,b,c∈N*)
Vì đội thứ nhất làm xong công việc trong 3 ngày, đội thứ hai trong 6 ngày và đội thứ ba trong 5 ngày và năng suất của ba đội như nhau nên ta có phương trình:
\(3a=6b=5c\)
\(\Leftrightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{5}}\)
Vì số máy của đội thứ nhất nhiều hơn số máy của đội thứ ba 8 chiếc nên ta có phương trình: a-c=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a-c}{\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{8}{\dfrac{2}{15}}=8\cdot\dfrac{15}{2}=60\)
Do đó:
\(\left\{{}\begin{matrix}3a=60\\6b=60\\5c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\left(nhận\right)\\b=10\left(nhận\right)\\c=12\left(nhận\right)\end{matrix}\right.\)
Vậy: Số máy cày của ba đội lần lượt là 20 máy, 10 máy và 12 máy
Gọi số máy cày của 3 đội là a, b, c ( máy cày)
Vì các máy cày có cùng năng suất, cày trên 1 cánh đồng có diện tích như nhau nên số ngày và số máy cày là 2 đại lượng tỉ lệ nghịch.
➩ a.3 = b.6 = c.5
➩ \(\dfrac{a.3}{30}\) = \(\dfrac{b.6}{30}\) = \(\dfrac{c.5}{30}\)
➩ \(\dfrac{a}{10}\) = \(\dfrac{b}{5}\) = \(\dfrac{c}{6}\)
Mà số máy của đội thứ nhất hơn số máy của đội thứ ba là 8 chiếc.
Nên a - c = 8
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a}{10}\) = \(\dfrac{b}{5}\) = \(\dfrac{c}{6}\) = \(\dfrac{a-c}{10-6}\) = \(\dfrac{8}{4}\)= 2
➩ a = 2.10 = 20
b = 2.5 = 10
c = 2.6 = 12
Vậy...
1/ Ta có \(\frac{C}{5}=\frac{B}{4}=\frac{C-B}{5-4}=\frac{10}{1}\)(tính chất dãy tỉ số = nhau) => \(\hept{\begin{cases}B=10.4=40\\C=10.5=50\end{cases}}\)
2/Gọi diện tích 3 cánh đồng lần lượt là a, b, c( a,b,c >0)
Ta có \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{200}{4}=50\)(tính chất dãy tỉ số = nhau) =>\(\hept{\begin{cases}a=50.3=150ha\\b=50.5=250ha\\c=50.7=350ha\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a-b}{\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{5}{\dfrac{1}{12}}=60\)
Do đó: a=20; b=15; c=10