\(\frac{2009^{2009}+1}{2009^{2010+1}}\)và B=\(\frac{2009^{2010}-2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

nhân A 2009 lần và B 2009 lần mà so sánh

2 tháng 4 2016

ta có:

B=(2009^2010-2)/(2009^2011-2)<1

=>(2009^2010-2)/(2009^2011-2)<(2009^2010-2)+2011/(2009^2011-2)+2011=(2009^2010+2009)/(2009^2011+2009)

=[2009*(2009^2009+1)]/[2009*(2009^2010+1)]=(2009^2009+1)/(2009^2010+1)=A

Vậy A=B

Đúng thì !

5 tháng 2 2016

Đặt A = \(\frac{2009^{2009}+1}{2009^{2010}+1}\)

      B = \(\frac{2009^{2010}-2}{2009^{2011}-2}\)

Do 20092010- 2 < 20092011- 2 => \(B<1\)

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

5 tháng 2 2016

Do 20092010- 2 < 20092011- 2 ⇒ B < 1

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

17 tháng 3 2017

-22/45>-22/101>-55/101

17 tháng 3 2017

câu a ta so sánh số đối của 2 phân số này.nếu ps nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn.

câu b ta nhân cả A và B với 2009 rồi so sánh 2009A với 2009B.ta được A>B

26 tháng 2 2019

Làm ơn giúp mk!!

26 tháng 2 2019

\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)

\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)

\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm

25 tháng 6 2018

Ta có : 

\(17A=\frac{17^{2009}+17}{17^{2009}+1}=\frac{17^{1009}+1+16}{17^{2009}+1}=\frac{17^{2009}+1}{17^{2009}+1}+\frac{16}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)

\(17B=\frac{17^{2010}+17}{17^{2010}+1}=\frac{17^{2010}+1+16}{17^{2010}+1}=\frac{17^{2010}+1}{17^{2010}+1}+\frac{16}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)

Vì \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\) nên \(17A>17B\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~