Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ P = 123456....20132014
Từ 1 - 9 có 9 chữ số
từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số
từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số
từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số
=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số
2/
n là số n tố > 3 => n lẻ => 22 lẻ
=> n2+ 2015 chia hết cho 2 nên là hợp số
3/
Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9
Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}
* nếu y = 0 => x = 4
* nếu y = 2 => x = 2
* nếu y = 4 => x E {0; 9}
* nếu y = 6 => x = 7
* nếu y = 8 => x = 5
Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]
4/
x/9 - 3/ y = 1/18
=> 2x/18 - 3/y = 1/18
=> 3/y = 1/18 - 2x/18
=> 3/y = 1-2x/18
=> y - 2xy = 54=> y[1-2x] = 54
mà 1 - 2x lẻ nên y chẵn
mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}
y | -2 | 2 | -6 | 6 | -18 | 18 | -54 | 54 |
1-2x | -27 | 27 | -9 | 9 | -3 | 3 | -1 | 1 |
2x | 28 | -26 | 10 | -8 | 4 | -2 | 2 | 0 |
x | 14 | -13 | 5 | -4 | 2 | -1 | 1 | 0 |
vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]
5/
Theo đề bài, ta có:
b E BC[14, 21]
mà b nhỏ nhất nên b = 42
=> 14a = 42 . 5
=> a = 15;
=> 21c = 28 . 42
=> c = 56;
từ đó suy ra
6d = 11 . 56
=> d = 308/3
=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng
- Vì n là số nguyên tố lớn hơn 3 =) n là số lẻ
Mà n^2 = n.n = số lẻ . số lẻ = số lẻ
Mà 2015 cũng là số lẻ
=) n^2+2015=số lẻ + số lẻ = số chẵn chia hết cho 2
Vậy n^2+2015 chia hết cho 1 , 2 và chia hết cho chính nó
=) n^2+2015 nhiều hơn 2 ước =) Là hợp số
Vì n là số nguyên tố lớn hơn 3
=> n không chia hết cho 3
=> n2 chia 3 dư 1
=> n2 = 3k + 1 ( k \(\inℕ^∗\))
=> n2 + 2015 = 3k + 1 + 2015 = 3k + 2016
Mà \(\hept{\begin{cases}3k⋮3\\2016⋮3\end{cases}}\)=> n2 + 2015 là hợp số.
Đặt n2 + 2006 = a2 (a ∈Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k∈N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
Vậy n2 + 2006 là hợp số
1) trả lời
4253 + 1422 =5775
mà 5775 chia hết cho 3;5
=>nó là hợp số
mình xin lỗi ấn nhầm bây giờ mk giải tiếp
giải
2) để 5x + 7 là số nguyên tố
=>5x+7 chia hết cho 5x+7 và 1
=>x thuộc (2;6)
3) trả lời
n.(n+1) là hợp số bởi vì
nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2
nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2
mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao
chào bạn
dễ mà
ta thấy n^2 là 1 số chính phương mà 1 số chính phương chia 3 dư 0 ;1
do n là snt >3=>n^2chia 3 dư1
=>n^2=3k+1
=>n^2+2006=3k+1+2006=3k+2007=3(k+669) chia hết cho 3
vậy n^2+2006 là hợp số
1) Đặt phép chia 1994xy cho 72, ta có:
1994xy : 72 = 27 dư 50xy
Xét x=1 => 501y : 72 = 6 dư 69y
Mà: số chia hết cho 72 gần số 69y là 648 và 720
=> 69y không chia hết cho 72 với mọi giá trị y
Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72
=> x=4
Thay x=4 ta có: 504y : 72 = 6 dư 72y
Để 72y chia hết cho 72 thì y=0
Vậy các giá trị x,y cần tìm là: x=4; y=0
2) Ta có: n là số nguyên tố >3
=> n có dạng n= 3k+1 (k\(\in\)N*)
=> n2+2015 = 3k+1+2015
=> n2+2015 = 3k+2016
Do: 3k\(⋮\)3, 2016\(⋮\)3
=> 3k+2016 \(⋮\)3
=> n2+2015 \(⋮\)3
Vậy n2+2015 là hợp số