Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)
Xét tổng : a + b = ( 3n+1 + 3n - 1 ) + ( 2.3n+1 - 3n + 1 )
a+b = 3 . 3 n+1 = 3n+2 \(⋮̸\) 7
Nếu cả hai số a , b đều chia hết cho 7 thì a + b \(⋮\) 7 ( mâu thuẫn với kết quả trên )
Do đó trong hai số a , b có ít nhất 1 số không chia hết cho 7
a, Ta có : 8.2n + 1n + 1
= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)
= 23 + n . 1
Mà 23 + n luôn luôn ko chia hết cho10
Nên 8.2n + 1n + 1 ko chi hết cho10
c: \(1^3+7^3+3^3+5^3\)
\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)
\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)
a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)
Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).
b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)
Vì \(25⋮25\)
nên \(\left(3^n+2^n\right)\times25⋮25\)
Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).
a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9
Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3
=> 9.10n + 18 \(⋮\) 9.3
=> 9.10n + 18 \(⋮\) 27.
b) 92n + 14 = 81n + 14.
Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.
=> 81n + 14 \(⋮\) 5
=> 92n + 14 \(⋮\) 5
Ta có:
\(B=7^{n+1}+3\left(n+1\right)-1\)
\(=7.7^n+3n+2\)
\(=7.7^n+21n-18n-7+9\)
\(=\left(7.7^n+21n-7\right)-\left(18n-9\right)\)
\(=7\left(7^n+3n-1\right)-9\left(2n-1\right)\)
\(=7B-9\left(2n-1\right)\) (*)
Suy ra nếu B chia hết cho 9 thì \(7B-9\left(2n-1\right)\) cũng chia hết cho 9 (tức A cũng chia hết cho 9).
Ngược lại, nếu A chia hết cho 9 thì từ (*) suy ra \(7B=A+9\left(2n-1\right)\) cũng chia hết cho 9. Vì 7 và 9 là hai số nguyên tố cũng nhau nên B cũng chia hết cho 9.
Xét
-n = 1=> 7^1+3.1-1 = 9 chia hết cho 9
-n = 2 => 7^2+3.2-1 = 54 chia hết cho 9
- Giả sử A chia hết cho 9 đúng với n = k-1 nghĩa là 7k-1 +3(k -1)-1 chia hết cho 9. Ta chứng minh bài toán đúng với n = k.
- Với n = k:
=> A = 7k + 3k - 1 = 7[7k-1 + 3 (k-1) -1] +3
=7[7^(k-1)+3(k-1)-1]-18(k-1) + 9
Vì:
7^(k-1)+3(k-1)-1 chia hết cho 9
18(k-1) chia hết cho 9
9 chia hết cho 9
nên 7^k+3k-1 chia hết cho 9 (đpcm).
Ý B làm tương tự thôi .....còn lại bạn tự làm nhé ^^
giúp mình với
thanhks