Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
A = 3 + 32 + 33 + 34 + ... + 320
3A = 32 + 33 + 34 + 35 + ... + 321
3A - A = (32 + 33 + 34 + 35 + ... + 321) - (3 + 32 + 33 + 34 + ... + 320)
2A = 321 - 3
A = \(\frac{3^{21}-3}{2}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{2}+\frac{3}{4}+\frac{3}{4}\right)-2=?\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{2^3}{3^3}\cdot\frac{3^2}{4^2}\cdot\left(-1\right)}{\frac{2^2}{5^2}\cdot\frac{\left(-5\right)^3}{12^3}}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\frac{-125}{1728}}=\frac{-\frac{1}{6}}{-\frac{5}{432}}=\left(-\frac{1}{6}\right)\cdot\left(-\frac{432}{5}\right)=\frac{72}{5}\)
tính tổng á :
\(A=3+3^2+3^3+3^4+...+3^{20}.\)
\(\Rightarrow3A=3^2+3^3+3^4+...3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+..+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-1\)
\(\Rightarrow A=\frac{3^{21}-1}{2}\)
Chứng tỏ bạn nhé
Dung minh ch k