Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}\)\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)
=> 24 + 48y = 18 + 72y
=> 72y - 48y = 24 - 18
=> 24y = 6
\(\Rightarrow y=\frac{6}{24}=\frac{1}{4}\)
Thay \(y=\frac{1}{4}\) vào đề bài ta có:
\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)
\(\Rightarrow\frac{3}{2}.\frac{1}{18}=\frac{5}{2}:6x\)
\(\Rightarrow\frac{1}{12}=\frac{5}{2}:6x\)
\(\Rightarrow6x=\frac{5}{2}:\frac{1}{12}=\frac{5}{2}.12=30\)
=> x = 30 : 6 = 5
Vậy \(x=5;y=\frac{1}{4}\)
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
\(=\frac{1}{x+y+z}\) (theo đề bài)
\(\Rightarrow x+y+z=\frac{1}{2}\)
Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2\)
\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=2+1\)
\(\Rightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3\)
\(\Rightarrow\frac{\frac{1}{2}+1}{x}=\frac{\frac{1}{2}+2}{y}=\frac{\frac{1}{2}-3}{z}=3\)
\(\Rightarrow\frac{3}{2}:x=\frac{5}{2}:y=\frac{-5}{2}:z=3\)
\(\Rightarrow\begin{cases}x=\frac{3}{2}:3=\frac{1}{2}\\y=\frac{5}{2}:3=\frac{5}{6}\\z=\frac{-5}{2}:3=\frac{-5}{6}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
Ta có: 1 + 2y/18 = 2.(1+2y)/2.18 = 2+4y/36
Sử dụng tc dãy tỉ số bằng nhau ta có:
2+4y/36 = 1+4y/24 = 2+4y-1-4y/36-24 = 1/12
Do 1+2y/18 = 1/12=> y = 1/4
1+6y/6x = 1/12=> x = 5
Vậy x = 5; y = 1/4
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{8y+2}{18+6x}\)
suy ra
\(\frac{1+4y}{24}=\frac{8y+2}{18+6x}=\frac{2\left(1+4y\right)}{2\left(9+3x\right)}=\frac{1+4y}{9+3x}\)
=>9+3x=24
3x=24-9
3x=15
x=15:3
x=5
TK CHO MÌNH NHA
Ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}\)
\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)
\(\Rightarrow24+48y=18+72y\)
\(\Rightarrow24-18=72y-48y\)
\(\Rightarrow24y=6\)
\(\Rightarrow y=6:24=\frac{1}{4}\)
Thay \(y=\frac{1}{4}\) vào đề bài ta có:
\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)
\(\Rightarrow\frac{\frac{3}{2}}{18}=\frac{\frac{5}{2}}{6x}\)
=> \(\frac{3}{2}.6x=\frac{5}{2}.18\)
\(\Rightarrow9x=45\)
\(\Rightarrow x=45:9=5\)
Vậy \(x=5;y=\frac{1}{4}\)
Bài 1 : Sửa đề :
Tìm x,y,z
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)
Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)
=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)
=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm
Tìm nốt bài cuối nhé
A ) ĐK: x#0
Ta có:
(1) 1+2y/18 = 1+4y/24
=> 24 + 48y = 18 + 72y
<=> y=1/4
(2) 1+4y/24=1+6y/6x
Thay y=1/4 vào (2) ta tìm đc x=5 (thỏa)
B ) x+y=3(x−y)=x:y
→x+y=3x−3y
→4y=2x
→x:y=4:2=2
→x+y=2
Mà x=2y nên
2y+y=3y=2
→y=2/3
→x=2−2/3=4/3
Chú ý : dấu / nghĩa là phần
Nếu mình đúng thì các bạn k mình nhé
a) \(\frac{1+2y}{18}=\frac{1+4y}{24}\Rightarrow24+48y=18+72y\Rightarrow6=24y\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\Rightarrow\frac{1+4.\frac{1}{4}}{24}=\frac{1+6.\frac{1}{4}}{6x}\Rightarrow\frac{2}{24}=\frac{\frac{5}{2}}{6x}\Rightarrow12x=60\Rightarrow x=5\)
b) \(x+y=3\left(x-y\right)\Rightarrow x+y=3x-3y\Rightarrow4y=2x\Rightarrow x=2y\)
\(x+y=\frac{x}{y}\Rightarrow2y+y=\frac{2y}{y}\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\Rightarrow x=2y=\frac{4}{3}\)
\(\)