\(\frac{a+4\sqrt{a}+4}{\sqrt{a}+2}\) + \(\frac{4-a}{\sqrt{a}-2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

a) \(\sqrt{\left(3-6a\right)^2}=6a-3\)

( vì \(a\ge\frac{1}{2}\)\(\Rightarrow3-6a< 0\))

12 tháng 10 2017

ta có:\(\sqrt{\frac{b+c}{a}}\le\frac{a+b+c}{2a}.\)   (BĐT cauchy) 

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)    (1)

tương tự ta có:  \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)    (2)

     \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)   (3)

từ (1),(2),(3) => \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> đpcm

12 tháng 10 2017

ta có ; \(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

  \(\sqrt{\frac{b}{c+a}}=\frac{b}{\sqrt{b\left(c+a\right)}}\ge\frac{2b}{a+b+c}\)

  \(\sqrt{\frac{c}{a+b}}=\frac{c}{\sqrt{c\left(a+b\right)}}\ge\frac{2c}{a+b+c}\)

cộng lại theo từng vế ta có biểu thức đó \(\ge2\). xảy ra đẳng thức \(\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}\Rightarrow a+b+c=0\left(\ne gt\right)}\)

\(\Rightarrow\)đẳng thức ko xảy ra

\(\sqrt{4\left(a-3\right)^2}\)

\(=\sqrt{2^2\left(a-3\right)^2}\)

\(=2\left(a-3\right)\)

\(=2a-6\)

15 tháng 7 2016

\(\sqrt{4\left(a-3\right)^2}=\sqrt{\left[2\left(a-3\right)\right]^2}=2\left(a-3\right)\)3)

NV
5 tháng 7 2020

\(\left(\frac{a-4}{a}\right)\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+1}{\sqrt{a}-2}\right)=\left(\frac{a-4}{a}\right)\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\left(\frac{a-4}{a}\right)\left(\frac{a-3\sqrt{a}+2-a-3\sqrt{a}-2}{a-4}\right)\)

\(=\frac{-6\sqrt{a}}{a}=\frac{-6}{\sqrt{a}}\)