Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(3-6a\right)^2}=6a-3\)
( vì \(a\ge\frac{1}{2}\)\(\Rightarrow3-6a< 0\))
ta có:\(\sqrt{\frac{b+c}{a}}\le\frac{a+b+c}{2a}.\) (BĐT cauchy)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\) (1)
tương tự ta có: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\) (2)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)
từ (1),(2),(3) => \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> đpcm
ta có ; \(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)
\(\sqrt{\frac{b}{c+a}}=\frac{b}{\sqrt{b\left(c+a\right)}}\ge\frac{2b}{a+b+c}\)
\(\sqrt{\frac{c}{a+b}}=\frac{c}{\sqrt{c\left(a+b\right)}}\ge\frac{2c}{a+b+c}\)
cộng lại theo từng vế ta có biểu thức đó \(\ge2\). xảy ra đẳng thức \(\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}\Rightarrow a+b+c=0\left(\ne gt\right)}\)
\(\Rightarrow\)đẳng thức ko xảy ra
\(\sqrt{4\left(a-3\right)^2}\)
\(=\sqrt{2^2\left(a-3\right)^2}\)
\(=2\left(a-3\right)\)
\(=2a-6\)
\(\sqrt{4\left(a-3\right)^2}=\sqrt{\left[2\left(a-3\right)\right]^2}=2\left(a-3\right)\)3)
\(\left(\frac{a-4}{a}\right)\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+1}{\sqrt{a}-2}\right)=\left(\frac{a-4}{a}\right)\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\)
\(=\left(\frac{a-4}{a}\right)\left(\frac{a-3\sqrt{a}+2-a-3\sqrt{a}-2}{a-4}\right)\)
\(=\frac{-6\sqrt{a}}{a}=\frac{-6}{\sqrt{a}}\)