Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
Để B ko tồn tại thì (n - 2)(1 + n) = 0 => n - 2 = 0 hoặc 1 + n = 0 => n = 2 ; -1.Vậy n = 2 ; -1 thì B ko tồn tại
Bài 1
Để phân số ko tồn tại thì (n-2)(n+1)=0
=>n=2 hoặc n=-1
Bài 4:
Để phân số không tồn tại thì (2n-1)(n2+1)=0
=>2n-1=0
hay n=1/2
Để Dlaf số nguyên
-) 2n+7 chia hết n+3
n+3 chia hết n+3 vậy 2(n+3)chia hết n+3
vậy 2n +6 chia hết n+3
suy ra (2n+7)-(2n+6)chia hết n+3
suy ra 1 chia hết n+3
vậy n+3 = 1 hoặc -1
suy ra n= -2 hoặc -4 k đúbg mk nha
Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)
Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)
mà \(n\inℤ\Rightarrow n+3\inℤ\)
Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)
a) ĐẶT \(A=\frac{7n-8}{2n-3}=\frac{7n-\frac{21}{2}+\frac{5}{2}}{2n-3}=\frac{\frac{7}{2}\left(2n-3\right)+\frac{5}{2}}{2n-3}=\frac{7}{2}+\frac{\frac{5}{2}}{2n-3}\)
Để A có GTLN\(\Leftrightarrow\frac{\frac{5}{2}}{2n-3}\)có GTLN
\(\Leftrightarrow2n-3\)có GTNN \(2n-3>0\)
\(\Leftrightarrow2n-3=1\)
\(\Leftrightarrow2n=4\)
\(\Leftrightarrow n=2\)
Vậy A có GTLN là 6 khi x=2
b) Ta có: \(\left(5a-3b+12\right)\left(2a-7b+3\right)⋮5\)
MÀ \(\left(5a-3b+12\right)̸⋮5\)(vì 12 ko chia hết cho 5)
\(\Rightarrow2a-7b+3⋮5\)
\(2a-2b-5b+3⋮5\)
MÀ \(5b⋮5\)
\(\Rightarrow2a-2b+3⋮5\)
Và \(40a-10⋮5\)
\(\Rightarrow2a-2b+3+40a-10⋮5\)
\(\Rightarrow42a-2b-7⋮5\left(ĐPCM\right)\)
A
Chuẩn 100%
Chúc bạn học tốt!!!
Phân số đã cho không tồn tại thì (n +3).(8 - n) = 0.
= > n + 3 = 0 hoặc 8 – n = 0
=> n = -3 hoặc n = 8
Vậy tổng các giá trị nguyên của n làm cho phân số A không tồn tại là :
(-3) + 8 = 5