Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Câu hỏi của Cuber Việt ( Câu b í -.- )
2. Quy đồng mẫu số:
\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)
\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)
Vì \(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.
So sánh \(ab+2018a\) và \(ab+2018b\):
. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.
. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)
\(\Rightarrow y.\left(x-3\right)=6\)
Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)
Tự lập bảng ...
Vậy ta có những cặp x,y thỏa mãn là:
\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)
Cần so sánh:
\(ab+2018a\) với \(ab+2018b\)
Cần so sánh \(2018a\) với \(2018b\)
Cần so sánh \(a\) với \(b\)
\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)
\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)
I:
Câu 1: A
Câu 2: B
II: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/3=b/4=c/5 và a+b+c=24
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
Do đó: a=6; b=8; c=10
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
Bài 1:
\(A=\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}:\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)
\(A=\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}:\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{2}{7}.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\)
\(A=\dfrac{2}{7}:\dfrac{2}{7}=1\)
Bài 2: Here
Chúc bạn học tốt!!!
1. Giải:
Gọi A =M : N
Ta có:M=\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\)= \(\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}\)=\(\dfrac{2}{7}\)
N=\(\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)=\(\dfrac{2.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}\)=\(\dfrac{2}{7}\)
Vậy A=M: N \(\Rightarrow\)A=\(\dfrac{2}{7}\):\(\dfrac{2}{7}\)=\(\dfrac{2}{7}\).\(\dfrac{7}{2}\)=\(\dfrac{2.7}{7.2}\)=1
2. Giải:
Với mọi x \(\in\)Q, ta luôn có \(x\) \(\le\) \(|x|\)(dấu bằng xảy ra khi x\(\ge\)0)
a)Nếu \(x+y\)\(\ge\)0 thì\(|x+y|=x+y\).
Vì \(x\le|x|,y\le|y|\)với mọi x, y\(\in\)Q nên:\(|x+y|=x+y\le|x|+|y|\)
b)Nếu x+y < 0 thì\(|x+y|=-\left(x+y\right)\)=\(-x-y\)
Mà -x\(\le\)\(|x|\), -y\(\le\)\(|y|\) nên: \(|x+y|\)= -x-y\(\le\)\(|x|+|y|\)
Vậy với mọi x, y\(\in\)Q ta đều có:\(|x+y|\le|x|+|y|\). Dấu bằng xảy ra khi x, y cùng dấu hoặc ít nhất có một số bằng 0.
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
Bài 2:
Trong các khẳng định:
a, Tập hợp các số hữu tỉ gồm số hữu tỉ dương và số hữu tỉ âm ( sai )
Vì tập hợp Q các số hữu tỉ này thiếu phần tử 0
b, Bạn viết mk chả hiểu j
trong câu hỏi tương tự đó, bạn vào xem đề rùi giúp mik nhá
a: \(0,25\in Q\)
=>Đúng
b: \(-\dfrac{6}{7}\in Q\)
=>Đúng
c: \(-235\notin Q\)
=>Sai