\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

a)\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b)\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\( S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

16 tháng 9 2020

\(a,\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(n+1-n\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{\sqrt{n-1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

28 tháng 8 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)

                          \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

                        \(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

                          \(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

Vậy S = 19/20

17 tháng 10 2018

CM bđt phụ nhá: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) \(\left(n\inℕ^∗\right)\)

\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right)\left(\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right)}\)

\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}\)

\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

\(VT=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)

\(VT=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=VP\)

Áp dụng vào A ta có : 

\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\) ( olm bị lỗi nên ko dám viết nhìu ) 

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\(A=1-\frac{1}{20}=\frac{19}{20}\)

Vậy \(A=\frac{19}{20}\)

Chúc bạn học tốt ~ 

27 tháng 10 2020

Xét phân thức phụ sau:

Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)

\(=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thay vào ta được:

\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

27 tháng 10 2020

Đặt biểu thức đã cho là A

Tổng quát ta có: Với \(a\inℕ^∗\)ta có:

\(\frac{1}{\left(a+1\right)\sqrt{a}+a.\sqrt{a+1}}=\frac{\left(a+1\right)-a}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}\)

\(=\frac{\left(\sqrt{a+1}-\sqrt{a}\right)\left(\sqrt{a+1}+\sqrt{a}\right)}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}\)

\(=\frac{\sqrt{a+1}}{\sqrt{a}.\sqrt{a+1}}-\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}\)

Áp dụng kết quả trên ta có:

Với \(n=1\)\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

Với \(n=2\)\(\Rightarrow\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

Với \(n=3\)\(\Rightarrow\frac{1}{4\sqrt{3}+3\sqrt{4}}=\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\)

.....................

Với \(n=399\)\(\Rightarrow\frac{1}{400\sqrt{399}+399\sqrt{400}}=\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+......+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0