Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp số : \(m=-\frac{1}{\sqrt[3]{3}};m=-\sqrt[3]{\left(2+\sqrt{3}\right)^2}\)
Ta có : \(y'=4x^3+4mx;y'=0\Leftrightarrow4x\left(x^2+m\right)=0\Leftrightarrow\begin{cases}x=0\\x=\pm\sqrt{-m}\end{cases}\) (m<0)
Gọi \(A\left(0;m^2+m\right);B\left(\sqrt{-m;}m\right);C\left(-\sqrt{-m};m\right)\) là các điểm cực trị
\(\overrightarrow{AB}=\left(\sqrt{-m},-m^2\right);\overrightarrow{AC}=\left(-\sqrt{-m},-m\right)\)
Tam giác ABC cân tại A nên góc 120 độ chính là góc A
\(\widehat{A}=120^0\Leftrightarrow\cos A=-\frac{1}{2}\Leftrightarrow\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\frac{1}{2}\)
\(\Leftrightarrow\frac{-\sqrt{-m}.\sqrt{-m}+m^4}{m^4-m}=-\frac{1}{2}\)
\(\Leftrightarrow\frac{m+m^4}{m^4-m}=-\frac{1}{2}\)
\(\Leftrightarrow2m+2m^4=m-m^4\Leftrightarrow3m^4+m=0\)
\(\Leftrightarrow\begin{cases}m=0\\m=-\frac{1}{\sqrt{3}}\end{cases}\) mà m=0 thì loại
Vậy \(m=-\frac{1}{\sqrt{3}}\) thỏa mãn bài toán
\(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow\begin{cases}x=0\\x^2=m\end{cases}\)
Hàm số đã cho có 3 điểm cực trị <=> phương trình y=0 có 3 nghiệm phân biệt và y đổi dấu khi x đi qua các nghiệm đó <=>m>0
- Khi đó 3 điểm cực trị của đồ thị hàm số là :
\(A\left(0;m-1\right);B\left(-\sqrt{m};-m^2=m-1\right);\left(\sqrt{m};-m^2=m-1\right)\)
- \(S_{ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|x_C-x_B\right|=m^2\sqrt{m}\); \(AB=AC=\sqrt{m^4+m},BC=2\sqrt{m}\)
- \(R=\frac{AB.AC.BC}{4S_{ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)\(\Leftrightarrow m^3-2m+1=0\)
\(\Leftrightarrow\begin{cases}m=1\\m=\frac{\sqrt{5}-1}{2}\end{cases}\)
ta tính \(y'=4x^3-2\left(3m-1\right)x=2x\left(2x^2-3x+1\right)\)
để hàm số có 3 cực trị thì pt y'=0 có 3 nghiệm phân biệt
ta có
\(y'=0\Leftrightarrow2x\left(2x^2-3m+1\right)=0\Rightarrow x=0;2x^2=3m-1\)
để pt có 3 nghiệm phân biệt thì 3m-1>0 suy ra m>1/3
x=0 ta có y=2m+1 suy ra \(A\left(0;2m+1\right)\) ;\(B\left(\sqrt{\frac{3m-1}{2}};-\frac{\left(3m-1\right)^2}{4}+2m+1\right)\); \(C\left(-\sqrt{\frac{3m-1}{2}};\frac{-\left(3m-1\right)^2}{4}+2m+1\right)\)
ta có \(\vec{AB}\left(\sqrt{\frac{3m-1}{2}};\frac{-\left(3m-1\right)^2}{4}\right)\); \(\vec{AC}=\left(-\sqrt{\frac{3m-1}{2}};-\frac{\left(3m-1\right)^2}{4}\right)\)
suy ra AC=AB suy ra tam giác ABC cân tại A
Gỉa sử A,B,C,D nội tiếp đường tròn suy ra tâm của đường tròn nằm trên trung tuyến BC
do tam giác ABC cân tại A suy ra trung tuyến BC cũng chính là đường cao của BC
ta có
\(\vec{BC}=\left(2\sqrt{\frac{3m-1}{2}};0\right)\)
phương trình đường cao qua A và vuông góc với BC nhận \(\vec{BC}\)làm vecto pháp tuyến có dạng
\(2\sqrt{\frac{3m-1}{2}}\left(x-0\right)+0\left(y-2m-1\right)=0\Rightarrow x=0\)(d)
Gọi I(0;a) thuộc (d) là tâm đường tròn mà A,B,C,D nội tiếp
suy ra ta có hệ pt
\(\begin{cases}IA=IB\\IB=IC\\IC=ID\end{cases}\)
Ta có \(y'=4x^3-4mx=4x\left(x^2-m\right);y'=0\Leftrightarrow x=0\) hoặc \(x^2=m\)
Hàm số có 3 điểm cực trị \(\Leftrightarrow\) phương trình \(y'=0\) có 3 nghiệm phân biệt là \(x=0;x=\pm\sqrt{m}\) suy ra đồ thị của hàm số có 3 điểm cực trị là \(A\left(0;m^2-m\right);B\left(-\sqrt{m};-m\right);\overrightarrow{AB}=\left(-\sqrt{m};-m^2\right);\overrightarrow{AC}=\left(\sqrt{m;}-m^2\right)\)
Do đó \(AB=AC=\sqrt{m^4+m}\) nên yêu cầu bài toán được thỏa mãn
\(\Leftrightarrow\widehat{BAC}=120^0\Leftrightarrow\left(\overrightarrow{AB};\overrightarrow{AC}\right)=120^0\)\(\Leftrightarrow\frac{\overrightarrow{AB}\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|\left|\overrightarrow{AC}\right|}=\frac{1}{2}\)
\(\Leftrightarrow\frac{-\left(m\right)+m^4}{m+m^4}=-\frac{1}{2}\Leftrightarrow2m^4-2m=-m-m^4\)
\(\Leftrightarrow3m^4-m=0\Leftrightarrow m\left(3m^3-1\right)=0\Leftrightarrow m=0\) hoặc \(m=\frac{1}{\sqrt[3]{3}}\)
Kết hợp với điều kiện (*) ta có giá trị cần tìm là \(m=\frac{1}{\sqrt[3]{3}}\)
Gọi \(H=BC\cap Oy\) thì AH là đường cao tam giác ABC
Ta có \(H\left(0;c-\frac{b^2}{4a}\right)\Rightarrow AH=\frac{b^2}{4\left|a\right|}\)
\(\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{AB}\Rightarrow R=\frac{AB}{2\sin\widehat{ACH}}=\frac{AB^2}{2AH}=\frac{b^3-8a}{8\left|a\right|b}\)
Từ yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\R=1\end{cases}\) \(\Leftrightarrow\begin{cases}m>0\\m^3-2m+1=0\end{cases}\)
\(\Leftrightarrow m=1\) hoặc \(m=\frac{-1+\sqrt{5}}{2}\)
a. Hàm có 3 cực trị \(\Rightarrow m< 0\)
\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)
Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu
Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy
Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\) là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)
\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)
Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)
\(\Rightarrow\) I trùng trung điểm BC
\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)
b.
Từ câu a ta thấy khoảng cách giữa 2 cực đại là:
\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)