Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> x4-2x2+1+4x2-8x+4=12x2+24x+12
<=> x4=10x2+32x+7
<=> x4+6x2+9=16x2+32x+16
<=> (x2+3)2=16(x+1)2
<=> x2+3=4(x+1) (1) hoac x2+3=-4(x+1) (2)
(1) <=> x2-4x-1=0 <=> \(x=2+\sqrt{5}\)hoac \(x=2-\sqrt{5}\)
(2) <=> x2+4x+7=0 pt vo nghiem
Vay: pt co nghiem \(x=2+\sqrt{5}\)hoac \(x=2-\sqrt{5}\)
\(\left(x^2+6x+5\right)\left(x^2+6x+6\right)=20\) (1)
Đặt \(a=x^2+6x+5\).Khi đó phương trình (1) viết lại :
\(a\left(a+1\right)=20\)
\(\Leftrightarrow a^2+a-20=0\)
\(\Leftrightarrow\left(a+5\right)\left(a-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-5\\a=4\end{matrix}\right.\)
Nếu \(a=-5\) thì \(x^2+6x+5=-5\)\(\Leftrightarrow x^2+6x+10=0\) (2)
Dễ thấy :\(x^2+6x+10=\left(x+3\right)^2+1\ge1>0\) với mọi x nên (2) vô nghiệm
Nếu \(a=4\) thì \(x^2+6x+5=4\)\(\Leftrightarrow x^2+6x+1=0\)\(\Leftrightarrow x=-3\pm2\sqrt{2}\)
Vậy phương trình đã cho có 2 nghiệm là \(x=-3-2\sqrt{2}\) hoặc \(x=-3+2\sqrt{2}\)
(x+1)(x+2)(x+4)(x+8)=28x2
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+9x+8\right)=28x^2\)(1)
Thấy x=0 không là nghiệm của (1). CHia 2 vế (1) cho x2 ta đc:
\(\left(1\right)\Leftrightarrow\left(x+\frac{8}{x}+6\right)\left(x+\frac{8}{9}+9\right)=28\)
Đặt \(t=x+\frac{8}{x}\)ta có:
\(\left(1\right)\Rightarrow\left(t+6\right)\left(t+9\right)=28\)
\(\Leftrightarrow t^2+15t+26=0\Leftrightarrow\orbr{\begin{cases}t=-2\\t=-13\end{cases}}\)
- Với \(t=-2\Rightarrow x+\frac{8}{x}=-2\Leftrightarrow x^2+2x+8=0\Leftrightarrow\left(x+1\right)^2+7>0\)(vô nghiệm)
- Với \(t=-13\Rightarrow x+\frac{8}{x}=-13\Rightarrow x^2+13x+8=0\)
\(\Delta=13^2-4\left(1.8\right)=137\)\(\Rightarrow x_{1,2}=\frac{-13\pm\sqrt{137}}{2}\)(thỏa mãn)
Vậy...
Nhận thấy \(x=0\) không phải nghiệm
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)\left(x+2\right)\left(x+4\right)=28x^2\)
\(\Leftrightarrow\left(x^2+8+9x\right)\left(x^2+8+6x\right)=28x^2\)
\(\Leftrightarrow\left(\frac{x^2+8+9x}{x}\right)\left(\frac{x^2+8+6x}{x}\right)=28\)
\(\Leftrightarrow\left(x+\frac{8}{x}+9\right)\left(x+\frac{8}{x}+6\right)-28=0\)
Đặt \(x+\frac{8}{x}+6=a\) ta được:
\(\left(a+3\right).a-28=0\)
\(\Rightarrow a^2+3a-28=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{8}{x}+6=4\\x+\frac{8}{x}+6=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+8=0\\x^2+13x+8=0\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ x22 + x2 = x12 + x1
Chuyển thành --> x12 + x1 - x2 -x22 = 0
x12 -x22 ( Hằng đẳng thức) = (x1-x2)(x1+x2)
x1-x2=0
Có được (x1-x2)(x1+x2) -(x1+x2)=0
Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0
x1-x2=0
( x1-x2)2 =02
(x1+x2)2 -4x1.x2 =0
---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)
a) Vì \(x=-2\)là một nghiệm của phương trình
\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:
\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)
\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)
Vậy \(m=-2\)