Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: P=A:B
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)
=>P>1
\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3\sqrt{x}-9+x+9}{x-9}:\dfrac{2\sqrt{x}-5-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-2}\)
\(=\dfrac{x\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x}{\sqrt{x}-2}\)
a, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\)
\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\\ \Rightarrow P=\dfrac{x}{x-9}\)
b,Để P=2 \(\Leftrightarrow\dfrac{x}{x-9}=2\)
\(\Leftrightarrow x=2\left(x-9\right)\\ \Leftrightarrow x=2x-18\\ \Leftrightarrow x-18=0\\ \Leftrightarrow x=18\)
omg tưởng chị lặn k on nữa chứ, thấy chị đổi ảnh bìa tưởng do máy e cập nhập muộn hóa ra chị on lại
Điều kiện: \(x\ge5\).
Phương trình tương đương với:
\(\sqrt{4\left(x-5\right)}+\dfrac{3\sqrt{x-5}}{\sqrt{9}}=3\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}=3\)
\(\Leftrightarrow\sqrt{x-5}=1\Rightarrow x-5=1\Leftrightarrow x=6\left(TM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\left\{6\right\}\).
a: Khi x=121 thì \(A=\dfrac{121+3}{11+3}=\dfrac{124}{14}=\dfrac{62}{7}\)
b: \(B=\left(\dfrac{x+3\sqrt{x}-2}{x-9}-\dfrac{1}{\sqrt{x}+3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{x+3\sqrt{x}-2-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
c: P=A:B
\(=\dfrac{x+3}{\sqrt{x}+3}:\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{x+3}{\sqrt{x}+1}\)
\(=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}-2=2\cdot2-2=2\)
Dấu = xảy ra khi \(\left(\sqrt{x}+1\right)^2=4\)
=>\(\sqrt{x}+1=2\)
=>x=1(nhận)
\(\dfrac{6}{x-3\sqrt{x}}\cdot\dfrac{6}{x-9}=\dfrac{6\cdot6}{\left(x-3\sqrt{x}\right)\left(x-9\right)}\)
\(=\dfrac{36}{\sqrt{x}\left(\sqrt{x}-3\right)^2\cdot\left(\sqrt{x}+3\right)}\)
\(\dfrac{6}{x-3\sqrt{x}}\cdot\dfrac{6}{x-9}\) (sửa đề)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{36}{\sqrt{x}\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}\)