Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
A B C D H I J K
+) Ta có: \(\widehat{BAI}=\widehat{DAI}=\frac{1}{2}\widehat{BAD}\)( AI là phân giác \(\widehat{BAD}\))
\(\widehat{ADI}=\widehat{CDI}=\frac{1}{2}\widehat{ADC}\)(1)
=> \(\widehat{ADI}+\widehat{DAI}=\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{BAD}=\frac{1}{2}\left(\widehat{ADC}+\widehat{BAD}\right)=\frac{1}{2}.180^o=90^o\)
Xét \(\Delta\)AID có: \(\widehat{ADI}+\widehat{DAI}=90^o\)=> \(\widehat{AID}=90^o\)
=> \(\Delta\) AID vuông tại I; có H là trung điểm AD => \(HI=\frac{1}{2}AD=AI=ID\Rightarrow HI=\frac{10}{2}=5cm\)
Tương tự ta chứng minh được:
\(\Delta\)BJC vuông tại J; có K là trung điểm BC => \(JK=\frac{1}{2}AC=BK=KC\Rightarrow JK=\frac{12}{2}=6cm\)
+) Xét hình thang ABCD có: HK là đường trung bình
=> HK//DC (i)
và \(HK=\frac{1}{2}\left(AB+DC\right)=15\left(cm\right)\)
+) Xét tam giác HDI có HD=HI => Tam giác HDI cân tại H => ^HDI=^HDI (2)
Từ (1) , (2) => ^HID =^CDI mà hai góc ở vị trí so le trong => HI//DC (ii)
Tương tự chứng minh được KJ//DC (iii)
Từ (i); (ii); (iii) => H; I; J; K thẳng hàng => \(IJ=HK-HI-JK=15-5-6=4\left(cm\right)\)
Bài 4:
Xét tam giác DIC có (AB//CD) (gt) theo hệ quả định lý Ta-Lét:
IA:IC=IB:ID suy ra IAxID=IBxIC(nhân chéo hai vế)
(đpcm)