K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

25 tháng 10 2015

a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2 

=> 5x^2 = 5 hoặc 5x^2 = 1 

b) pt <=> l(x-1)^2l = x + 2 

VÌ ( x - 1 )^2 >=  0  => l( x - 1 )^2 l = ( x- 1 )^2 

pt <=> x^2 - 2x + 1 = x + 2 <=>

 x^2 - 3x - 1 = 0 

c) l2x-5l - l2x^2 - 7x + 5 l =  0 

<=> l2x-5l - l ( 2x-5)(x-1) l = 0 

<=> l2x-5l ( 1 - l x - 1 l = 0 

<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0 

d); e lập bảng xét dấu sau đó xét ba trường hợ p ra 

NM
1 tháng 3 2021

ta có 

\(\left(5x^2+2x-1\right)-\left(2x-1\right)\sqrt{5x^2+2x-1}-\left(4x+2\right)=0\)

Đặt \(\sqrt{5x^2+2x-1}=a\ge0\Rightarrow a^2-\left(2x-1\right)a-\left(4a+2\right)=0\)

\(\Rightarrow\Delta=\left(2x-1\right)^2+4\left(4x+2\right)=4x^2+12x+9=\left(2x+3\right)^2\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{2x-1+2x+3}{2}=1\\a=\frac{2x-1-2x-3}{2}=-2\text{ (Loại)}\end{cases}\Rightarrow5x^2+2x-1=1\Rightarrow x=\frac{-1\pm\sqrt{11}}{5}}\)

4 tháng 4 2020

ta có

zế trái :\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

zế phải : \(4-2x-x^2=5-\left(x+1\right)^2\le5\)

zậy 2 zế đều = 5 , khi đó x=-1 . Zới giá trị này cả 2 bất đẳng thức này đều trở thành đẳng thức

KL ::

15 tháng 10 2016

Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)

  • Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.

Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\) 

Tương tự ta chứng minh được :

  • f(x) nghịch biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1

+ Với x = -1 thì VT = VP => là nghiệm của pt trên

+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí

+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí

Vậy x = -1 là nghiệm duy nhất của phương trình.

15 tháng 10 2016

Ta có 

\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)

\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)

4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)

Ta có VT \(\ge5\);VP \(\le\)5

Nên dấu bằng xảy ra khi x = - 1

a: =>(x-3)(x+1)=0

=>x=3 hoặc x=-1

b: =>x(x-3)=0

=>x=0 hoặc x=3

c: =>(x-5)(x+1)=0

=>x=5 hoặc x=-1

d: =>5x^2+7x-5x-7=0

=>(5x+7)(x-1)=0

=>x=1 hoặc x=-7/5

e: =>x^2-4=0

=>x=2 hoặc x=-4

h: =>x^2-4x+4-3=0

=>(x-2)^2=3

=>\(x=2\pm\sqrt{3}\)

22 tháng 3 2023

Thank 🥲

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé