Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+5x^2-12x=0\)
\(\Rightarrow x\cdot\left(2x^2+5x-12\right)=0\)
\(\Rightarrow x\cdot\left(2x^2-3x+8x-12\right)=0\)
\(\Rightarrow x\cdot\left[x\cdot\left(2x-3\right)+4\cdot\left(2x-3\right)\right]=0\)
\(\Rightarrow x\cdot\left(2x-3\right)\cdot\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\x+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=-4\end{cases}}\)
\(x^2-5x-24=0\)
\(\Rightarrow x^2+3x-8x-24=0\)
\(\Rightarrow x\cdot\left(x+3\right)-8\cdot\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\cdot\left(x-8\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+3=0\\x-8=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=8\end{cases}}}\)
\(x^2-6x+8=0\)
\(\Rightarrow x^2-2x-4x+8=0\)
\(\Rightarrow x\cdot\left(x-2\right)-4\cdot\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\cdot\left(x-4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)
a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)
TH1 : x = 12 ; TH2 : x = 2
b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
TH1 : x = 8 ; TH2 : x = -3
c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)
TH1 : x = -1/2 ; TH2 : x = 7/2
d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)
Tương tự HĐT thôi :)
a) x2 - 12x - 2x + 24 = 0
<=> x( x - 12 ) - 2( x - 12 ) = 0
<=> ( x - 12 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x + 3 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
d) x3 + 6x2 + 12x + 8 = 0
<=> ( x + 2 )3 = 0
<=> x + 2 = 0
<=> x = -2
e) ( x + 2 )2 - x2 + 4 = 0
<=> x2 + 4x + 4 - x2 + 4 = 0
<=> 4x + 8 = 0
<=> 4x = -8
<=> x = -2
f) 2( x + 5 ) = x2 + 5x
<=> x2 + 5x - 2x - 10 = 0
<=> x( x + 5 ) - 2( x + 5 ) = 0
<=> ( x + 5 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0
<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0
<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0
<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0
<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0
<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0
<=> ( 3x + 13 )( 13x - 37 ) = 0
<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) x2 - 6x + 4 = 0
<=> ( x2 - 6x + 9 ) - 5 = 0
<=> ( x - 3 )2 - ( √5 )2 = 0
<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0
<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
a) \(x^2-12x-2x+24=0\)
\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) \(4x^2-12x-7=0\)
\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
d) \(x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Rightarrow x=-2\)
e) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow4x+8=0\)
\(\Rightarrow x=-2\)
f) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) \(x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2-5=0\)
\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
\(x^2-5x-24=0\)
\(x^2+3x-8x-24=0\)
\(x\cdot\left(x+3\right)-8\cdot\left(x+3\right)=0\)
\(\left(x+3\right)\cdot\left(x-8\right)=0\)
\(\hept{\begin{cases}x+3=0\\x-8=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=8\end{cases}}}\)
\(x^2-6x+8=0\)
\(x^2-2x-4x+8=0\)
\(x\cdot\left(x-2\right)-4\cdot\left(x-2\right)=0\)
\(\left(x-2\right)\cdot\left(x-4\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)
\(2x^2+5x^2-12x=0\)
\(\Leftrightarrow7x^2-12x=0\)
\(\Leftrightarrow x\left(7x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{12}{7}\end{cases}}\)
gợi ý
\(2x^3+8x^2-3x^2-12x=0\)
\(\left(2x^3+8x^2\right)-\left(3x^2-12x\right)=0\)
\(2x^3+5x^2-12x=0\)
\(\Leftrightarrow\left(2x^3-3x^2\right)+\left(8x^2-12x\right)=0\)
\(\Leftrightarrow2x^2\left(x-\frac{3}{2}\right)+8x\left(x-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\left(2x^2+8x\right)\left(x-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+8x=0\\x-\frac{3}{2}=0\end{cases}}\)
tự túc :)
`2x^{3}+5x^{2}-12x=0`
`<=>x(2x^{2}+5x-12)=0`
`<=>x(2x^{2}+8x-3x-12)=0`
`<=>x(x+4)(2x-3)=0`
`<=>x=0` hoặc `x=-4` hoặc `x=3/2`