Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)
\(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)
Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)
\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)
\(2Q-Q=2^{2019}-1\)
\(Q=2^{2019}-1\)(2)
Từ (1) và (2), ta được:
\(S=2^{2019}-\left(2^{2019}-1\right)=1\)
Tìm x biết ( 2 cách )
( x - 2 ) mũ 2018 = ( x - 2 ) mũ 2016
Ai giúp mình với mai mình phải nộp bài rồi
\(\left(x-2\right)^{2018}=\left(x-2\right)^{2016}\)
=> \(\left(x-2\right)^{2018}-\left(x-2\right)^{2016}=0\)
=> \(\left(x-2\right)^{2016}\left(\left(x-2\right)^2-1\right)=0\)
=> \(\orbr{\begin{cases}\left(x-2\right)^{2016}=0\\\left(\left(x-2\right)^2-1\right)=0\end{cases}}\)
=> x = 2
và (x - 2)2 = 1 => x - 2 = 1 ; -1
=> x = 3 ; x = 1
=> x = 1 ; 2 ; 3
2.2.2.5.5.5.10 = ( 2.5 ) . ( 2.5 ) . ( 2.5 ) . 10 = 10 . 10 . 10 . 10 = 104
2 . 2 . 2 . 2 . 4 . 4 = ( 2.2 ) . ( 2.2 ) . 4 . 4 = 4 . 4 . 4 . 4 = 44
4 . 4 . 8 . 8 = (2 . 2 ) . ( 2.2 ) . ( 2 . 2 . 2 ) . ( 2. 2 . 2 ) = 2 . 2 .2 . 2 .2 . 2 .2 . 2 .2 . 2 = 210
x3 = 125
x = \(\sqrt[3]{125}=5\)
2x + 4.2x = 5.25
2x ( 4 + 1 ) = 25 . 5
2x . 5 = 25 . 5
x = 5
3n : 9 = 37
3n : 32 = 37
3n-2 = 37
n - 2 = 7
n = 7 + 2 = 9
n = { 3 ; 4 ; 5 }
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
Ta có:
\(x^{2014}=x^2\)
\(\Rightarrow x^{2014}-x^2=0\)
\(x^2.\left(x^{2012}-1\right)=0\)
TH1: \(x^2=0\Rightarrow x=0\)
TH2: \(x^{2012}-1=0\Rightarrow x^{2012}=1\Rightarrow x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;0;1\right\}\)
\(2^x+2^{x+2}=32.\left(2^2+1\right)\)
\(\Rightarrow2^x+2^{x+2}=32.5\)
\(\Rightarrow2^x+2^{x+2}=160\)
\(\Rightarrow2^x\left(1+4\right)=160\)
\(\Rightarrow2^x.5=160\)
\(\Rightarrow2^x=160:5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5
\(2^{x+1}.2^{2014}=2^{2016}\Leftrightarrow2^{x+1+.2014}=2^{2016}\Rightarrow x+2015=2016\Rightarrow x=1\)