K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

Bài 1:

b) \(16x^2-8x+1=\left(4x-1\right)^2\)

c) \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left[\left(x+3\right)\left(x+6\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

Đật \(x^2+9x+19=t\) , pt trở thành

\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+9x+19\right)^2\)

d) \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

e) \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\)

a)_ Sai đề

 

 

10 tháng 9 2016

N = (x2 - 4x - 5)(x2 - 4x - 19) + 49

Đặt x2 - 4x - 5 = t, ta có:

t(t - 14) + 49

t2 - 14t + 49

= (t - 7)2

= (x- 4x - 12)2

= (x2 - 6x + 2x - 12)2

= [x(x - 6) + 2(x - 6)]2

= [(x + 2)(x - 6)]2

[(x + 2)(x - 6)]2 lớn hơn hoặc bằng 0

Vậy Min N = 0 khi x = - 2 hoặc x = 6.

T = x2 - 6x + y2 - 2y + 12

= x2 - 2 . x . 3 + 9 + y2 - 2 . y . 1 + 1 + 2

= (x - 3)2 + (y - 1)2 + 2

(x - 3)2 lớn hơn hoặc bằng 0

(y - 1) lớn hơn hoặc bằng 0

(x - 3)2 + (y - 1)2 + 2 lớn hơn hoặc bằng 2

Vậy Min T = 2 khi x = 3 và y = 1.

Chúc bạn học tốt ^^

 

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

14 tháng 9 2020

a) ( 2x + 1 )2 + 10( 2x + 1 ) + 25

= ( 2x + 1 )2 + 2.( 2x + 1 ).5 + 52

= [ ( 2x + 1 ) + 5 ]2

= ( 2x + 1 + 5 )2

= ( 2x + 6 )2

b) x2 + 2x( y - 2 ) + y2 - 4y + 4

= x2 + 2x( y - 2 ) + ( y2 - 4y + 4 )

= x2 + 2x( y - 2 ) + ( y - 2 )2

= [ x + ( y - 2 ) ]2

= ( x + y - 2 )2

c) x2 + 12x + 40 + y2 + 4y

= ( x2 + 12x + 36 ) + ( y2 + 4y + 4 )

= ( x + 6 )2 + ( y + 2 )2 ( cấy ni không viết được ;-; )

d) x2 - 8x - 20 - y2 - 12y

= ( x2 - 8x + 16 ) - ( y2 + 12y + 36 ) 

= ( x - 4 )2 - ( y + 6 )2

= [ ( x - 4 ) - ( y + 6 ) ][ ( x - 4 ) + ( y + 6 ) ]

= ( x - 4 - y - 6 )( x - 4 + y + 6 )

= ( x - y - 10 )( x + y + 2 ) 

e) x2 + y2 + 4x + 4y + 2( x + 2 )( y + 2 ) + 8 

= ( x2 + 4x + 4 ) + 2( x + 2 )( y + 2 ) + ( y2 + 4y + 4 )

= ( x + 2 )2 + 2( x + 2 )( y + 2 ) + ( y + 2 )2

= [ ( x + 2 ) + ( y + 2 ) ]2

= ( x + 2 + y + 2 )2

= ( x + y + 4 )2

18 tháng 6 2017

bài 1 :

a) 6(x+1)2 - (x-3)(x2 + 3x +9) + (x-2)2

= 6( x2 + 2x + 1 ) - (x3 + 3x2 + 9x - 3x2 - 9x - 27 ) + x2 - 4x + 4

= 6x2 + 12x + 6x - x3 - 3x2 - 9x + 3x2 + 9x + 27 + x2 - 4x + 4

= -x3 + 7x2 + 14x + 31 (1)

Thay x = 2 vào biểu thức (1) ta được :

\(\left(-2\right)^3+7.2^2+14.2+31\) = 79

Vậy với x = 2 giá trị của biểu thức (1) là 79

b) \(\left(2x-1\right)\left(3x+1\right)+\left(3x-4\right)\left(3-2x\right)\)

= 6x2 + 2x - 3x - 1 + 9x - 6x2 - 12 + x

= 9x - 13 (2)

Thay x= \(\dfrac{9}{8}\) Vào biểu thức (2) ta được :

9.\(\dfrac{9}{8}\) - 13 = \(-\dfrac{23}{8}\)

Vậy với x = 9/8 giá trị của biểu thức (2) là -\(\dfrac{23}{8}\)

18 tháng 6 2017

Những hằng đẳng thức đáng nhớ (Tiếp 2)

Những hằng đẳng thức đáng nhớ (Tiếp 2)

Những hằng đẳng thức đáng nhớ (Tiếp 2)

10 tháng 5 2021

a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)

\(=\left(5x+\frac{1}{2}y\right)^2\)

b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)

c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)

\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)

d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)

\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)

\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)

3 tháng 9 2023

Có cái cc

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.