Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{1}{x^2-x}+\dfrac{2x}{4x^3}-\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{2x^2}-\dfrac{1}{x^2+x+1}\)
\(=\dfrac{2x\left(x^2+x+1\right)+\left(x-1\right).\left(x^2+x+1\right)-2x^2.\left(x-1\right)}{2x^2.\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\dfrac{2x^3+2x^2+2x+x^3-1-2x^3+2x^2}{2x^2.\left(x^3-1\right)}\)
\(=\dfrac{4x^2+2x+x^3-1}{2x^5-2x^2}\)
\(=\dfrac{x^3+4x^2+2x-1}{2x^5-2x^2}\)
\(b,\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{\left(x+1\right).\left(x^2-x+1\right)}\)
\(=\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{\left(x^2-x+1\right)}\)
\(=\dfrac{x+1\left(x+1\right).\left(x^2-x+1\right)-\left(x^2+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x+1+x^3+1-x^2-2}{\left(x+1\right).\left(x^2-x+1\right)}\)
\(=\dfrac{x+0+x^3-x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x\left(1+x^2-x\right)}{\left(x+1\right).\left(x^2-x+1\right)}\)
\(=\dfrac{x}{x+1}\)
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
\(A=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(=0\)
<><><>
\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)
\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)
\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)
\(=-1\)
<><><>
\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)
\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)
\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)
\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)
\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)
\(=0\)
1) a) \(\dfrac{x^2-y^2}{x^3}+y^{^3}.\left(\dfrac{xy-x^2-y^2}{y}.\dfrac{xy}{y-x}\right)\)
\(=\dfrac{x^2-y^2}{x^3}+y^3.\dfrac{x\left(xy-x^2-y^2\right)}{y-x}\)
\(=\dfrac{x^2-y^2}{x^3}+\dfrac{xy^3\left(xy-x^2-y^2\right)}{y-x}\)
\(=\dfrac{-\left(x-y\right)^2\left(x+y\right)+xy^3\left(xy-x^2-y^2\right)}{x^3\left(y-x\right)}\)
Cậu tự thu gọn nốt nhé , tớ sắp đi hok
Bài 2 . Theo giả thiết : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
=> \(\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)
=> \(\left(x+y+z\right)\left(yz+zx+xy\right)=xyz\)
=>\(x\left(yz+xz+xy\right)+y\left(yz+xz+xy\right)+z\left(yz+xz+xy\right)-xyz=0\)=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
Ta có :
* x = - y
* y = -z
* x = -z
Áp dụng đều này vào phân thức cần CM , ta có :
TH1 . x = -y
\(\dfrac{1}{\left(-y\right)^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{\left(-y\right)^5+y^5+z^5}\)
=> \(\dfrac{1}{z^5}=\dfrac{1}{z^5}\), luôn đúng
Tương tự thử với các trường hợp còn lại ta cũng sẽ có được đpcm