Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\cdot\left(1+3+3^2+3^3+.....+3^{2018}\right)+1\)
Đặt: \(B=1+3+3^2+3^3+....+3^{2018}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+....+3^{2019}\)
\(\Rightarrow3B-B=\left(3+3^2+3^3+3^4+....+3^{2019}\right)-\left(1+3+3^2+3^3+....+3^{2018}\right)\)
\(2B=3^{2019}-1\)
\(B=\frac{3^{2019}-1}{2}\)
\(\Rightarrow A=2\left(1+3+3^2+3^3+....+3^{2018}\right)+1\)
\(=2\cdot\frac{3^{2019}-1}{2}+1\)
\(=\frac{2.3^{2019}-1}{2}+1\)
\(=3^{2019}-1+1\)
\(=3^{2019}\)
A=2.(1+3+3^2+3^3+....+3^2018)+1
ĐẶT B= 1+3+3^2+3^3+....+3^2018
3B=3+3^2+3^3+3^4....+3^2019
=> 3B-B=(3+3^2+3^3+3^4+...+3^2019)-(1+3+3^2+3^3+...+3^2018)
2B=3^2019-1
B=\(\frac{3^{2019}-1}{2}\)
=> A=2.\(\frac{3^{2019}-1}{2}+1\)
A=3^2019-1+1
A=3^2019
a)A=1+22+24+...+214+216
2A=2(1+22+24+...+214+216)
2A=2+23+25+...+215+217
2A-A=(2+23+25+...+215+217)-(1+22+24+...+214+216)
1A=(217-1)/1
A=217-1
b)B=1-3+32-33+...-32015+32017
3B=3(1-3+32-33+...-32015+32017)
3B=3-32+33-...-32016+32017)
Mà B=1-3+32-33+...-32015+32017
=>3B-B=1+22017
=>4B=1+32016
=>B=(1+32017)/4
\(A=3^0+3^1+3^2+......+3^{2018}\)
\(3A=3.\left(3^0+3^1+3^2+.....+3^{2018}\right)\)
\(3A=3^1+3^2+3^3+........+3^{2019}\)
\(3A-A=\left(3^1+3^2+3^3+......+3^{2019}\right)-\left(3^0+3^1+3^2+.....+3^{2018}\right)\)
\(2A=3^{2019}-3^0\)
\(A=\left(3^{2019}-3^0\right):2\)
\(B=6^{10}+6^{11}+6^{12}+....+6^{2012}\)
\(6B=6.\left(6^{10}+6^{11}+6^{12}+.....+6^{2012}\right)\)
\(6B=6^{11}+6^{12}+6^{13}+.......+6^{2013}\)
\(6B-B=\left(6^{11}+6^{12}+6^{13}+......+6^{2013}\right)-\left(6^{10}+6^{11}+6^{12}+.......+6^{2012}\right)\)
\(5B=6^{2013}-6^{10}\)
\(B=\left(6^{2013}-6^{10}\right):5\)
Rút gọn :
A = 1+ 2 + 22 + 23 + ... + 259 + 260
B = 3 + 32 + 33 + 34 + ... + 32018 + 32019
Giúp mình với
A = 1 + 2 + 22 + 23 + ... + 259 + 260
2A = 2 + 22 + 23 + 24 + ... + 260 + 261
2A - A = 261 - 1
B = 3 + 32 + 33 + 34 + ... + 32018 + 32019
3B = 32 + 33 + 34 + 35 + ... + 32019 + 32020
3B - B = 32020 - 3
B = 32020−32
ta có
\(A=2^0+2^1+2^2+...+2^{60}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{61}\)
\(\Rightarrow2A-A=2^{61}-1\)
\(\Rightarrow A=2^{61}-1\)
tương tự với biểu thức B bạn lấy 3B - B còn 2B rồi chia cho 2 sẽ ra \(\frac{3^{2020}-3}{2}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2017}}\right)\)
\(A=2-\frac{1}{2^{2017}}\)
A=1+1/2+1/22+1/23+...+1/22017
1/2A=1/2+1/22+1/23+1/24+...+1/22018
A-1/2A=(1+1/2+1/22+1/23+...+1/22017)-(1/2+1/22+1/23+1/24+...+1/22018)
A-1/2A=1-22012018
1/2A=1-1/22018
A=(1-1/22018).2
A=2-22019
Đặt \(D=1^2+2^2+3^2+...+2018^2\)
\(D=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2018\left(2019-1\right)\)
\(D=1.2-1+2.3-2+3.4-3+...+2018.2019-2018\)
\(D=\left(1.2+2.3+...+2018.2019\right)-\left(1+2+3+...+2018\right)\)
Đặt \(A=1.2+2.3+...+2018.2019\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+2018.2019\left(2020-2017\right)\)
\(\Rightarrow3A=2018.2019.2010\Rightarrow A=\frac{2018.2019.2020}{3}\)
Đặt \(B=1+2+3+...+2018\)
\(B=\frac{\left(2018+1\right)\left(2018-1+1\right)}{2}=\frac{2019.2018}{2}\)
\(\Rightarrow D=A+B=\frac{2018.2019.2020}{3}+\frac{2019.2018}{2}\)
\(\Rightarrow D=\frac{2018.2019.2020.2+2019.2018.3}{6}\)
A=1+3+32+33+...+32017+32018
=>3xA=(1+3+32+33+...+32017+32018)x3
=3+32+33+34+...+32018+32019
=>3xA -A=(3+32+33+34+...+32018+32019)-(1+3+32+33+...+32017+32018)
2xA=32019-1
=>A=(32019-1) :2
Vậy rút gọn A ta được:A= (32019-1):2
Chúc học giỏi^^
\(A=1+3+3^2+3^3+...+3^{2018}\)
\(3A=3+3^2+3^3+.....+3^{2018}+3^{2019}\)
\(3A-A=\left(3+3^2+3^3+....+3^{2018}+3^{2019}\right)-\left(1+3+3^2+3^3+....+3^{2018}\right)\)
\(2A=3^{2019}-1\)
\(\Rightarrow A=\frac{3^{2019}-1}{2}\)