Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
1,\(\frac{3x}{9}=\frac{2}{6}\Rightarrow\frac{3x}{9}=\frac{3}{9}\Rightarrow x=1.\)
bn định cho nguyên cái đề học sinh giỏi ra à
1 bài văn dã man
hết ns đc luôn
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
gọi d là ƯC(2n+1; 3n+2) (1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow6n+3-6n-4⋮d\)
\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d=\pm1\) (2)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)
=> 2n+1/3n+2 là phân số tối giản
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản